The pervaporation mechanism of pure components through a commercial microporous silica membrane was studied by performing experiments using water, methanol, ethanol, 2-propanol, and n-propanol in the 40-80 degrees C temperature range. Experimental fluxes were correlated to feed temperature and viscosity. It was found that the permeation mechanism obeys the adsorption-diffusion description, covering both the microscopic models based on configurational (micropore) diffusion and on activated surface diffusion. The contribution of convection was negligible. Size parameters for the permeating molecules such as molecular weight, kinetic diameter, and effective diameter, which are expected to have an influence on diffusion, did not correlate with the flux, thus strongly emphasizing the importance of sorption as the rate-determining step for transport in the pervaporation process. This was confirmed by correlating parameters reflecting polarity with flux: an exponential relation between the Hansen polarity (especially the hydrogen bonding component) and the flux was observed. A similar correlation was found between the dielectric constant and the flux. Furthermore, the flux increases in the same direction as the hydrophilicity of the pure components (log P). The effects of membrane surface tension and contact angles are less outspoken, but experiments performed on glass supported and silica supported membrane top layers suggest an important influence of the sublayers on the flux.
Nanofiltration experiments in methanol and ethanol were carried out for six reference components with different molecular weights (MW 228-880) and polarities (log P 0-12). The contribution of diffusion to solute transport, calculations based on results from cell diffusion experiments, was found to be only 1-7%; solute transport occurs mainly by convection. Furthermore, it was found that solute transport is influenced by solute-solvent-membrane interactions. Solvent-solute interactions (solvation) cause a different effective solute diameter in each solvent: it is smaller in ethanol than in methanol, resulting in lower rejections in ethanol than in methanol. Solute rejection increases with increasing molecular size (for components with similar polarity). Solute-membrane interactions were expressed in polarity terms and charge effects. A decrease of the rejection with decreasing solute polarity (for components with similar MW) was observed. Since non-polar components (high log P) are exposed to smaller repulsion forces from the polymeric membrane material, the resistance against solute permeation is lower for these components. The solvent-membrane interactions were found to result in solvation of the pore wall; the degree of membrane solvation is different for each solvent. It is determined by the affinity between the solvent and the membrane, and by the molecular size of the solvent. In ethanol, hydrophilic membranes show a larger drop in solute rejection than hydrophobic membranes. The differences in solvent-membrane affinity (measured by contact angle) are much smaller for the first membranes, and therefore pore wall solvation decreases with increasing solvent size. Hydrophobic membranes have a much larger affinity for ethanol than for methanol, leading to stronger interactions, but undergo competitive forces due to the larger solvent size. Therefore, the difference in degree of solvation and effective pore diameter is less pronounced. Based on these three observed or postulated interactions, rejections of all six reference solutes in methanol and ethanol could be explained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.