Since the studies of Engel (1982) and Bollerslev (1986), the ARCH and GARCH processes have been used extensively to model volatile series. However, Pagan and Schwert (1990) have shown the limits of these choices. This deficiency is overcome by the NonParametric AutoRegressive Conditionally Heteroscedastic (NPARCH) processes. In this work, we use the Nadaraya-Watson method to estimate the autoregression and volatility functions of a NPARCH process. We show the strong consistency and the asymptotic normality of these estimators. Through brief simulations, we illustrate these two properties.
Since the studies of Engel (1982) and Bollerslev (1986), the ARCH and GARCH processes have been used extensively to model volatile series. However, Pagan and Schwert (1990) have shown the limits of these choices. This deficiency is overcome by the NonParametric AutoRegressive Conditionally Heteroscedastic (NPARCH) processes. In this work, we use the Nadaraya-Watson method to estimate the autoregression and volatility functions of a NPARCH process. We show the strong consistency and the asymptotic normality of these estimators. Through brief simulations, we illustrate these two properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.