Since 2000, some thirteen quinolones and fluoroquinolones have been developed and have come to market. The quinolones, one of the most successful classes of antibacterial drugs, stabilize DNA cleavage complexes with DNA gyrase and topoisomerase IV (topo IV), the two bacterial type IIA topoisomerases. The dual targeting of gyrase and topo IV helps decrease the likelihood of resistance developing. Here, we report on a 2.8 Å X-ray crystal structure, which shows that zoliflodacin, a spiropyrimidinetrione antibiotic, binds in the same DNA cleavage site(s) as quinolones, sterically blocking DNA religation. The structure shows that zoliflodacin interacts with highly conserved residues on GyrB (and does not use the quinolone water–metal ion bridge to GyrA), suggesting it may be more difficult for bacteria to develop target mediated resistance. We show that zoliflodacin has an MIC of 4 µg/mL against Acinetobacter baumannii (A. baumannii), an improvement of four-fold over its progenitor QPT-1. The current phase III clinical trial of zoliflodacin for gonorrhea is due to be read out in 2023. Zoliflodacin, together with the unrelated novel bacterial topoisomerase inhibitor gepotidacin, is likely to become the first entirely novel chemical entities approved against Gram-negative bacteria in the 21st century. Zoliflodacin may also become the progenitor of a new safer class of antibacterial drugs against other problematic Gram-negative bacteria.
Topoisomerases are essential enzymes that recognize and modify the topology of DNA to allow DNA replication and transcription to take place. Topoisomerases are divided into type I topoisomerases, that cleave one DNA strand to modify DNA topology, and type II, that cleave both DNA strands. Topoisomerases normally rapidly religate cleaved-DNA once the topology has been modified. Topoisomerases do not recognize specific DNA sequences, but actively cleave positively supercoiled DNA ahead of transcription bubbles or replication forks, and negative supercoils (or precatenanes) behind, thus allowing the unwinding of the DNA-helix to proceed (during both transcription and replication). Drugs that stabilize DNA-cleavage complexes with topoisomerases produce cytotoxic DNA damage and kill fast-dividing cells; they are widely used in cancer chemotherapy. Oligonucleotide-recognizing topoisomerase inhibitors (OTIs) have given drugs that stabilize DNA-cleavage complexes specificity by linking them to either: (i) DNA duplex recognizing triplex forming oligonucleotide (TFO-OTIs) or DNA duplex recognizing pyrrole-imidazole-polyamides (PIP-OTIs) (ii) or by conventional Watson–Crick base pairing (WC-OTIs). This converts compounds from indiscriminate DNA-damaging drugs to highly specific targeted DNA-cleaving OTIs. Herein we propose simple strategies to enable DNA-duplex strand invasion of WC-OTIs giving strand-invading SI-OTIs. This will make SI-OTIs similar to the guide RNAs of CRISPR/Cas9 nuclease bacterial immune systems. However, an important difference between OTIs and CRISPR/Cas9, is that OTIs do not require the introduction of foreign proteins into cells. Recent successful oligonucleotide therapeutics for neurodegenerative diseases suggest that OTIs can be developed to be highly specific gene editing agents for DNA lesions that cause neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.