High-dimensional, localized ribonucleic acid (RNA) sequencing is now possible owing to recent developments in spatial transcriptomics (ST). ST is based on highly multiplexed sequence analysis and uses barcodes to match the sequenced reads to their respective tissue locations. ST expression data suffer from high noise and dropout events; however, smoothing techniques have the promise to improve the data interpretability prior to performing downstream analyses. Single-cell RNA sequencing (scRNA-seq) data similarly suffer from these limitations, and smoothing methods developed for scRNA-seq can only utilize associations in transcriptome space (also known as one-factor smoothing methods). Since they do not account for spatial relationships, these one-factor smoothing methods cannot take full advantage of ST data. In this study, we present a novel two-factor smoothing technique, spatial and pattern combined smoothing (SPCS), that employs the k-nearest neighbor (kNN) technique to utilize information from transcriptome and spatial relationships. By performing SPCS on multiple ST slides from pancreatic ductal adenocarcinoma (PDAC), dorsolateral prefrontal cortex (DLPFC) and simulated high-grade serous ovarian cancer (HGSOC) datasets, smoothed ST slides have better separability, partition accuracy and biological interpretability than the ones smoothed by preexisting one-factor methods. Source code of SPCS is provided in Github (https://github.com/Usos/SPCS).
Modern agent-based models (ABM) and other simulation models require evaluation and testing of many different parameters. Managing that testing for large scale parameter sweeps (grid searches) as well as storing simulation data requires multiple, potentially customizable steps that may vary across simulations. Furthermore, parameter testing, processing, and analysis are slowed if simulation and processing jobs cannot be shared across teammates or computational resources. While high-performance computing (HPC) has become increasingly available, models can often be tested faster through the use of multiple computers and HPC resources. To address these issues, we created the Distributed Automated Parameter Testing (DAPT) Python package. By hosting parameters in an online (and often free) "database", multiple individuals can run tests simultaneously in a distributed fashion, enabling ad hoc crowdsourcing of computational power. Combining this with a flexible, scriptable tool set, teams can evaluate models and assess their underlying hypotheses quickly. Here we describe DAPT and provide an example demonstrating its use.
Modern agent-based models (ABM) and other simulation models require evaluation and testing of many different parameters. Managing that testing for large scale parameter sweeps (grid searches), as well as storing simulation data, requires multiple, potentially customizable steps that may vary across simulations. Furthermore, parameter testing, processing, and analysis are slowed if simulation and processing jobs cannot be shared across teammates or computational resources. While high-performance computing (HPC) has become increasingly available, models can often be tested faster with the use of multiple computers and HPC resources. To address these issues, we created the Distributed Automated Parameter Testing (DAPT) Python package. By hosting parameters in an online (and often free) “database”, multiple individuals can run parameter sets simultaneously in a distributed fashion, enabling ad hoc crowdsourcing of computational power. Combining this with a flexible, scriptable tool set, teams can evaluate models and assess their underlying hypotheses quickly. Here, we describe DAPT and provide an example demonstrating its use.
Extracellular matrix (ECM) is a key part of the cellular microenvironment and critical in multiple disease and developmental processes. Representing ECM and cell–ECM interactions is a challenging multi–scale problem that acts across the tissue and cell scales. While several computational frameworks exist for ECM modeling, they typically focus on very detailed modeling of individual ECM fibers or represent only a single aspect of the ECM. Using the PhysiCell agent–based modeling platform, we combine aspects of previous modeling efforts and develop a framework of intermediate detail that addresses direct cell–ECM interactions. We represent a small region of ECM as an ECM element containing 3 variables: anisotropy, density, and orientation. We then place many ECM elements through a space to form an ECM. Cells have a mechanical response to the local ECM variables and remodel ECM based on their velocity. We demonstrate aspects of this framework with a model of cell invasion where the cell's motile phenotype is driven by the ECM microstructure patterned by prior cells' movements. Investigating the limit of high–speed communication and with stepwise introduction of the framework features, we generate a range of cellular dynamics and ECM patterns — from recapitulating a homeostatic tissue, to indirect communication of paths (stigmergy), to collective migration. When we relax the high–speed communication assumption, we find that the behaviors persist but can be lost as rate of signal generation declines. This result suggests that cell–cell communication mitigated via the ECM can constitute an important mechanism for pattern formation in dynamic cellular patterning while other processes likely also contribute to leader-follower behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.