Given the prevalence of independent component analysis (ICA) for signal processing, many methods for improving the convergence properties of ICA have been introduced. The most utilized methods operate by iterative rotations over pre-whitened data, whereby limiting the space of estimated demixing matrices to those that are orthogonal. However, a proof of the identifiability conditions for orthogonal ICA methods has not yet been presented in the literature. In this paper, we derive the identifiability conditions, starting from the orthogonal ICA maximum likelihood cost function. We then review efficient optimization approaches for orthogonal ICA defined on the Lie group of orthogonal matrices. Afterwards, we derive a new efficient algorithm for orthogonal ICA, by defining a mapping onto a space of constrained matrices which we define as hyper skewsymmetric. Finally, we experimentally demonstrate the advantages of the new algorithm over the pre-existing Lie group methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.