Xanthine oxidase (XO) was shown to catalyze the reduction of nitrite to nitric oxide (NO), under anaerobic conditions, in the presence of either NADH or xanthine as reducing substrate. NO production was directly demonstrated by ozone chemiluminescence and showed stoichiometry of approximately 2:1 versus NADH depletion. With xanthine as reducing substrate, the kinetics of NO production were complicated by enzyme inactivation, resulting from NO-induced conversion of XO to its relatively inactive desulfo-form. Steady-state kinetic parameters were determined spectrophotometrically for urate production and NADH oxidation catalyzed by XO and xanthine dehydrogenase in the presence of nitrite under anaerobic conditions. pH optima for anaerobic NO production catalyzed by XO in the presence of nitrite were 7.0 for NADH and <6.0 for xanthine. Involvement of the molybdenum site of XO in nitrite reduction was shown by the fact that alloxanthine inhibits xanthine oxidation competitively with nitrite. Strong preference for Mo؍S over Mo؍O was shown by the relatively very low NADH-nitrite reductase activity shown by desulfo-enzyme. The FAD site of XO was shown not to influence nitrite reduction in the presence of xanthine, although it was clearly involved when NADH was the reducing substrate. Apparent production of NO decreased with increasing oxygen tensions, consistent with reaction of NO with XO-generated superoxide. It is proposed that XO-derived NO fulfills a bactericidal role in the digestive tract.
Peroxynitrite, a potent oxidising, nitrating and hydroxylating agent, results from the reaction of nitric oxide with superoxide. We show that peroxynitrite can be produced by the action of a single enzyme, xanthine oxidoreductase (XOR), in the presence of inorganic nitrite, molecular oxygen and a reducing agent, such as pterin. The effects of oxygen concentration on peroxynitrite production have been examined. The physiologically predominant dehydrogenase form of the enzyme is more effective than the oxidase form under aerobic conditions. It is proposed that XOR-derived peroxynitrite fulfils a bactericidal role in milk and in the digestive tract. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.