Address space layout randomization (ASLR) is an important first line of defense against memory corruption attacks and a building block for many modern countermeasures. Existing attacks against ASLR rely on software vulnerabilities and/or on repeated (and detectable) memory probing. In this paper, we show that neither is a hard requirement and that ASLR is fundamentally insecure on modern cachebased architectures, making ASLR and caching conflicting requirements (ASLR⊕Cache, or simply AnC). To support this claim, we describe a new EVICT+TIME cache attack on the virtual address translation performed by the memory management unit (MMU) of modern processors. Our AnC attack relies on the property that the MMU's page-table walks result in caching page-table pages in the shared last-level cache (LLC). As a result, an attacker can derandomize virtual addresses of a victim's code and data by locating the cache lines that store the page-table entries used for address translation. Relying only on basic memory accesses allows AnC to be implemented in JavaScript without any specific instructions or software features. We show our JavaScript implementation can break code and heap ASLR in two major browsers running on the latest Linux operating system with 28 bits of entropy in 150 seconds. We further verify that the AnC attack is applicable to every modern architecture that we tried, including Intel, ARM and AMD. Mitigating this attack without naively disabling caches is hard, since it targets the low-level operations of the MMU. We conclude that ASLR is fundamentally flawed in sandboxed environments such as JavaScript and future defenses should not rely on randomized virtual addresses as a building block. Permission to freely reproduce all or part of this paper for noncommercial purposes is granted provided that copies bear this notice and the full citation on the first page. Reproduction for commercial purposes is strictly prohibited without the prior written consent of the Internet Society, the first-named author (for reproduction of an entire paper only), and the author's employer if the paper was prepared within the scope of employment.
Current Control-Flow Integrity (CFI) implementations track control edges individually, insensitive to the context of preceding edges. Recent work demonstrates that this leaves sufficient leeway for powerful ROP attacks. Context-sensitive CFI, which can provide enhanced security, is widely considered impractical for real-world adoption. Our work shows that Context-sensitive CFI (CCFI) for both the backward and forward edge can be implemented efficiently on commodity hardware. We present PathArmor, a binary-level CCFI implementation which tracks paths to sensitive program states, and defines the set of valid control edges within the state context to yield higher precision than existing CFI implementations. Even with simple context-sensitive policies, PathArmor yields significantly stronger CFI invariants than context-insensitive CFI, with similar performance.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.