MurG is an essential glycosyltransferase that forms the glycosidic linkage between N-acetyl muramyl pentapeptide and N-acetyl glucosamine in the biosynthesis of the bacterial cell wall. This enzyme is a member of a major superfamily of NDP-glycosyltransferases for which no x-ray structures containing intact substrates have been reported. Here we present the 2.5-Å crystal structure of Escherichia coli MurG in complex with its donor substrate, UDPGlcNAc. Combined with genomic analysis of other superfamily members and site-specific mutagenesis of E. coli MurG, this structure sheds light on the molecular basis for both donor and acceptor selectivity for the superfamily. This structural analysis suggests that it will be possible to evolve new glycosyltransferases from prototypical superfamily members by varying two key loops while maintaining the overall architecture of the family and preserving key residues.
O-GlcNAcylation of serine and threonine residues is a dynamic and essential post-translational modification involved in signaling pathways in eukaryotes. Studies of O-GlcNAcylation would be aided by small-molecule inhibitors of O-GlcNAc transferase (OGT), the sole enzyme know to mediate this modification, but discovery of such molecules has been hampered by poor expression of cloned OGT and lack of suitable high-throughput screens. This Communication describes the development an expression system to access large amounts of the catalytic domain of OGT and the implementation of a fluorescence-based substrate analogue displacement assay that has led to the discovery of a set of OGT inhibitors. This work lays the foundation for both structural and functional analysis of the catalytic domain of OGT.
O-linked N-Acetylglucosamine (O-GlcNAc) post-translational modifications originate from the activity of the hexosamine pathway, and are known to affect intracellular signaling processes. As aberrant responses to microenvironmental signals are a feature of chronic lymphocytic leukemia (CLL), O-GlcNAcylated protein levels were measured in primary CLL cells. In contrast to normal circulating and tonsillar B cells, CLL cells expressed high levels of O-GlcNAcylated proteins, including p53, c-myc and Akt. O-GlcNAcylation in CLL cells increased following activation with cytokines and through toll-like receptors (TLRs), or after loading with hexosamine pathway substrates. However, high baseline O-GlcNAc levels were associated with impaired signaling responses to TLR agonists, chemotherapeutic agents, B cell receptor crosslinking and mitogens. Indolent and aggressive clinical behavior of CLL cells were found to correlate with higher and lower O-GlcNAc levels, respectively. These findings suggest that intracellular O-GlcNAcylation is associated with the pathogenesis of CLL, which could potentially have therapeutic implications.
Assignments are presented for resonances in the magic-angle spinning solid-state NMR spectra of the major coat protein subunit of the filamentous bacteriophage Pf1. NMR spectra were collected on uniformly 13C and 15N isotopically enriched, polyethylene glycol precipitated samples of fully infectious and hydrated phage. Site-specific assignments were achieved for 231 of the 251 labeled atoms (92%) of the 46-residue-long coat protein, including 136 of the 138 backbone atoms, by means of two- and three-dimensional 15N and 13C correlation experiments. A single chemical shift was observed for the vast majority of atoms, suggesting a single conformation for the 7300 subunits in the 36 MDa virion in its high-temperature form. On the other hand, multiple chemical shifts were observed for the Calpha, Cbeta, and Cgamma atoms of T5 in the helix terminus and the Calpha and Cbeta atoms of M42 in the DNA interaction domain. The chemical shifts of the backbone atoms indicate that the coat protein conformation involves a 40-residue continuous alpha-helix extending from residue 6 to the C-terminus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.