It has been realized that the distinction between social-psychological effects and physical effects in pedestrian crowds is complex, and so the relevance of social psychology for the properties of pedestrian streams is still discussed controversially. Although physics-based models appear to capture many properties rather accurately, it was argued that simple systems of self-driven particles could not explain certain emergent phenomena. In particular, results from a recent empirical study of pedestrian flow at bottlenecks have been interpreted as indicating the relevance of social psychology even in relatively simple scenarios of crowd dynamics. The study showed a surprising dependence of the density near the bottleneck on the width of the corridor leading to it. The density increased with increasing corridor width, although a wider corridor provides more space for pedestrians. It has been argued that this observation is a consequence of social norms, which trigger the effect by a preference for queuing in such situations. However, convincing evidence for this hypothesis is still missing. Here, we reconsider this scenario from a physics perspective using computer simulations of a simple microscopic velocity-based model.
In this study a simple speed-based model is employed to simulate an experiment of pedestrian bottleneck flow. The experiment revealed that the density near the bottleneck is influenced by the motivation of the pedestrians and the corridor width. In narrow corridors, distinct lanes are formed for pedestrians with low motivation. These lanes can disappear when the pedestrians have a high motivation to reach their target. We show that a speed-based model is - despite its relative simplicity- capable to reproduce the observed phenomena to a high degree.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.