Co-processed excipients may enhance functionality and reduce drawbacks of traditional excipients for the manufacture of tablets on a commercial scale. The following study aimed to characterise a range of co-processed excipients that may prove suitable for dispersible tablet formulations prepared by direct compression. Co-processed excipients were lubricated and compressed into 10.5-mm convex tablets using a Phoenix compaction simulator. Compression profiles were generated by varying the compression force applied to the formulation and the prepared tablets were characterised for hardness, friability, disintegration and fineness of dispersion. Our data indicates that CombiLac, F-Melt type C and SmartEx QD100 were the top 3 most suitable out of 16 co-processed excipients under the conditions evaluated. They exhibited good flow properties (Carr's index ˂ 20), excellent tabletability (tensile strength > 3.0 MPa at 0.85 solid fraction), very low friability (< 1% after 15 min), rapid disintegration times (27-49 s) and produced dispersions of ideal fineness (< 250 μm). Other co-processed excipients (including F-Melt type M, Ludiflash, MicroceLac, Pharmaburst 500 and Avicel HFE-102) may be appropriate for dispersible tablets produced by direct compression providing the identified disintegration and dispersion risks were mitigated prior to commercialisation. This indicates that robust dispersible tablets which disintegrate rapidly could be manufactured from a range of co-processed excipients.
Palatability and patient acceptability are critical attributes of dispersible tablet formulation. Co-processed excipients could provide improved organoleptic profile due to rational choice of excipients and manufacturing techniques. The aim of this study was to identify the most suitable co-processed excipient to use within directly compressible dispersible tablet formulations. Nine excipients, selected based on successful manufacturability, were investigated in a randomised, preference and acceptability testing in 24 healthy adult volunteers. Excipients were classified in order of preference as follows (from most preferred): SmartEx QD100 > F-Melt Type C > F-Melt Type M > MicroceLac > Ludiflash > CombiLac > Pharmaburst 500 > Avicel HFE-102 > Avicel PH-102. Broad differences were identified in terms of acceptability, with SmartEx QD100 being 'very acceptable', F-Melt Type C, F-Melt Type M and MicroceLac being 'acceptable', Ludiflash, CombiLac and Pharmaburst 500 being 'neutral' and Avicel products being 'very unacceptable' based on ratings using five-point hedonic scales. Organoleptic differences were ascribed to different composition and physical properties of excipients, resulting in dissimilar taste and mouth-feel. Excipients with particle size in water larger than 200-250 μm were considered poorly acceptable, which supports the use of this value as a threshold for maximum particle size of dispersible formulation. The most promising co-processed excipients for directly compressible dispersible tablets were successfully identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.