Extraterrestrial fabrication of spacecraft by current best-practice manufacturing methods is complicated by the need to integrate thousands of unique parts, each made using a diversity of processes and raw materials. Reducing this complexity could enable exponential space exploration via self-replicating spacecraft (known as Von Neumann probes). We propose a hierarchical model for machine design, based on 13 reversiblyassembled part types, reducing the complexity of machine selfreplication and bridging prior work in the areas of in-situ resource utilization (ISRU) and modular robotics. Analogous to amino acids in biological systems, these parts form a basis set for the electronic and mechanical subsystems of an exploratory spacecraft. In simulation we validate representative subsystem designs and develop a hierarchical architecture for the design of mechanisms, actuation, and electronics. By standardizing and modularizing the parts, we drastically reduce the diversity of the required supply chain as well as the minimum viable payload mass. We estimate that a seed launch could contain approximately 10 5 parts, fit within the envelope of a 3U cubesat, and enable the assembly of over one hundred self-replicating assemblers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.