The implementation of ITS to increase the efficiency of saturated highways has become increasingly prevalent. It is a high level objective for many international governments and operators that highways should be managed in a way that is both sustainable i.e. environmental, social and economically sound and supportive of a Low-Carbon-Energy Future. Some clarity is therefore needed to understand how Intelligent Transport Systems perform within the constraints of that objective. The paper describes the development of performance criteria that reflect the contributions of Information Communication Technology (ICT) emissions, vehicle emissions and the embedded carbon within the physical transport infrastructure that typically comprises one type of Intelligent Transport System i.e. Active Traffic Managementa scheme that is used to reduce inter-urban congestion. The performance criteria form part of a new framework methodology 'EnvFUSION' (Environmental Fusion for ITS) outlined here. This is illustrated using a case study where environmental performance and pollution baselines (collected from independent experts, academic, governmental sources and suppliers) are processed using an attributional Lifecycle Assessment tool. The tool assesses the production and operational processes of the physical infrastructure of Active Traffic Management using inputs from the 'Ecoinvent' database. The ICT component (responsible for data links) is assessed using direct observation, whilst vehicle emissions are estimated using data from a National Atmospheric Emissions Laboratory. Analytical Hierarchy Process and Dempster-Shafer theory are used to create a prioritised performance hierarchy: the Intelligent Transport Sustainability Index, which includes weighted criteria based on stakeholder expertise. A synthesis of the individual criteria is then used to reflect the overall performance of the Active Traffic Management scheme in terms of sustainability (low-carbon-energy and socio-economic) objectives.
Essential environmental resources are rapidly exploited globally, while socialecological systems at different scales fail to meet sustainable development challenges. Ecosystem services research, which at present predominantly utilizes static modelling approaches, needs better integration with socio-economic dynamics in order to assist a scientific approach to sustainability. This article focuses on Brownfield lands, a unique landscape that is undergoing transformations and provides ecosystem services that remain, at this point in time, mostly unrecognized in public discourse. We discuss the main issues associated with current modelling and valuation approaches and formulate an ecosystem-based integrated redevelopment workflow applied to the assessment of Brownfield redevelopment options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.