Different discharge morphologies in atmospheric Ar and He plasmas are excited by using a pulsed microwave hairpin resonator. Ar plasmas form an arched plasma plume at the opened end of the hairpin, whereas He plumes generate only a contracted plasmas in between both tips of metal electrodes. Despite this different point, their discharge processes have three similar characteristics: (i) the ionization occurs at the main electrode firstly and then develops to the slave electrode, (ii) during the shrinking stage the middle domain of the discharge channels disappears at last, and (iii) even at zero power input (in between pulses) a weak light region always exists in the discharge channels. Both experimental results and electromagnetic simulations suggest that the discharge is resonantly excited by the local enhanced electric fields. In addition, Ar ionization and excitation energies are lower than those of He, the effect of Ar gas flow is far greater than that of He gas, and the contribution of accelerated electrons only locates at the domain with the strongest electric fields. These reasons could be used to interpret the different characteristic plume morphologies of the proposed atmospheric Ar and He plasmas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.