The SARS-CoV-2 Delta (Pango lineage B.1.617.2) variant of concern spread globally, causing resurgences of COVID-19 worldwide1,2. The emergence of the Delta variant in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions. Here we analyse 52,992 SARS-CoV-2 genomes from England together with 93,649 genomes from the rest of the world to reconstruct the emergence of Delta and quantify its introduction to and regional dissemination across England in the context of changing travel and social restrictions. Using analysis of human movement, contact tracing and virus genomic data, we find that the geographic focus of the expansion of Delta shifted from India to a more global pattern in early May 2021. In England, Delta lineages were introduced more than 1,000 times and spread nationally as non-pharmaceutical interventions were relaxed. We find that hotel quarantine for travellers reduced onward transmission from importations; however, the transmission chains that later dominated the Delta wave in England were seeded before travel restrictions were introduced. Increasing inter-regional travel within England drove the nationwide dissemination of Delta, with some cities receiving more than 2,000 observable lineage introductions from elsewhere. Subsequently, increased levels of local population mixing—and not the number of importations—were associated with the faster relative spread of Delta. The invasion dynamics of Delta depended on spatial heterogeneity in contact patterns, and our findings will inform optimal spatial interventions to reduce the transmission of current and future variants of concern, such as Omicron (Pango lineage B.1.1.529).
Time series models are ubiquitous in science, arising in any situation where researchers seek to understand how a system's behaviour changes over time. A key problem in time series modelling is inference; determining properties of the underlying system based on observed time series. For both statistical and mechanistic models, inference involves finding parameter values, or distributions of parameters values, which produce outputs consistent with observations. A wide variety of inference techniques are available and different approaches are suitable for different classes of problems. This variety presents a challenge for researchers, who may not have the resources or expertise to implement and experiment with these methods. PINTS (Probabilistic Inference on Noisy Time Series-https://github.com/pints-team/pints) is an open-source (BSD 3-clause license) Python library that provides researchers with a broad suite of non-linear optimisation and sampling methods. It allows users to wrap a model and data in a transparent and straightforward interface, which can then be used with custom or pre-defined error measures for optimisation, or with likelihood functions for Bayesian inference or maximum-likelihood estimation. Derivative-free optimisation algorithms-which work without harder-to-obtain gradient information-are included, as well as inference algorithms such as adaptive Markov chain Monte Carlo and nested sampling, which estimate distributions over parameter values. By making these statistical techniques available in an open and easy-to-use framework, PINTS brings the power of these modern methods to a wider scientific audience.
The Zika virus has emerged as a global public health concern. Its rapid geographic expansion is attributed to the success of Aedes mosquito vectors, but local epidemiological drivers are still poorly understood. Feira de Santana played a pivotal role in the Chikungunya epidemic in Brazil and was one of the first urban centres to report Zika infections. Using a climate-driven transmission model and notified Zika case data, we show that a low observation rate and high vectorial capacity translated into a significant attack rate during the 2015 outbreak, with a subsequent decline in 2016 and fade-out in 2017 due to herd-immunity. We find a potential Zika-related, low risk for microcephaly per pregnancy, but with significant public health impact given high attack rates. The balance between the loss of herd-immunity and viral re-importation will dictate future transmission potential of Zika in this urban setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.