Glioblastoma multiforme (GBM) is an aggressive brain tumor, fatal within 1 year from diagnosis in most patients despite intensive multimodality therapy. The migratory and microscopically invasive nature of GBM as well as its resistance to chemotherapy renders conventional therapies inadequate in its treatment. Although Mer receptor tyrosine kinase (RTK) inhibition has been shown to decrease the long-term survival and improve the chemo-sensitivity of GBM in vitro, its role in malignant cellular migration has not been previously evaluated. In this study, we report for the first time a role for Mer RTK in brain tumor migration and show that Mer inhibition profoundly impedes GBM migration and alters cellular morphology. Our data demonstrate that Mer RTK inhibition results in altered signaling through focal adhesion kinase (FAK) and RhoA GTPase and a transformation of cytoskeletal organization, suggesting both molecular and structural mechanisms for the abrogation of migration. We also describe a novel and translational method of Mer RTK inhibition using a newly developed monoclonal antibody, providing proof of principle for future evaluation of Mer-targeted translational therapies in the treatment of GBM. Previous findings implicating Mer signaling in glioblastoma survival and chemotherapy resistance coupled with our discovery of the role of Mer RTK in GBM cellular migration support the development of novel Mer-targeted therapies for this devastating disease.
Glioblastoma is an aggressive tumor that occurs in both adult and pediatric patients and is known for its invasive quality and high rate of recurrence. Current therapies for glioblastoma result in high morbidity and dismal outcomes. The TAM subfamily of receptor tyrosine kinases includes Tyro3, Axl, and MerTK. Axl and MerTK exhibit little to no expression in normal brain but are highly expressed in glioblastoma and contribute to the critical malignant phenotypes of survival, chemosensitivity and migration. We have found that Foretinib, a RTK inhibitor currently in clinical trial, inhibited phosphorylation of TAM receptors, with highest efficacy against MerTK, and blocked downstream activation of Akt and Erk in adult and pediatric glioblastoma cell lines, findings that are previously unreported. Survival, proliferation, migration, and collagen invasion were hindered in vitro. Foretinib treatment in vivo abolished MerTK phosphorylation and reduced tumor growth 3-4 fold in a subcutaneous mouse model. MerTK targeted shRNA completely prevented intracranial and subcutaneous glioma growth further delineating the impact of MerTK inhibition on glioblastoma. Our findings provide additional target validation for MerTK inhibition in glioblastoma and demonstrate that robust MerTK inhibition can be achieved with the multi-kinase inhibitor Foretinib as an innovative and translational therapeutic approach to glioblastoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.