Thermal-oxidative ageing of polyoxymethylene (POM) copolymer in the oven at 100°C for 1, 2, 3, 5, 7, 10, 14 and 21 days and the influence of early thermal-oxidative ageing on POM structure and properties were studied by means of wide-angle X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry and tensile test. Based on the results, we found that the early thermal-oxidative ageing of POM copolymer can be divided into three regions. The region I is the initial 3 days. In this region, some molecular chains rearranged, resulting in internal stress relaxation, increase of crystallinity degree and grain size due to the perfection of crystal structure; both extended chain crystal (ECC) and folded chain crystal (FCC) increased and ECC grew faster than FCC. The region II is from 3 days to 10 days, and in this region, chain scission took place in amorphous region and led to chemi-crystallization. The region III is after 10 days. In this region, the structure and performance of POM copolymer reached a stable situation at this stage. In this work, the difference between skin and core were also analysed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.