Mitochondrial medicine provides a metabolic perspective on the pathology of conditions linked with inadequate oxidative phosphorylation. Dysfunction in the mitochondrial machinery can result in improper energy production, leading to cellular injury or even apoptosis. Clinical presentations are often subtle, so clinicians must have a high index of suspicion to make early diagnoses. Symptoms could include muscle weakness and pain, seizures, loss of motor control, decreased visual and auditory functions, metabolic acidosis, acute developmental regression, and immune system dysfunction. The 2013 Neurobiology of Disease in Children Symposium, held in conjunction with the 42nd Annual Meeting of the Child Neurology Society, aimed to (1) describe accepted clinical phenotypes of mitochondrial disease produced from various mitochondrial mutations, (2) discuss contemporary understanding of molecular mechanisms that contribute to disease pathology, (3) highlight the systemic effects produced by dysfunction within the mitochondrial machinery, and (4) introduce current strategies that are being translated from bench to bedside as potential therapeutics.
For many years the aerospace and automotive industries have realized significant improvements in efficiency, performance and cost savings by simulating multiple prototype vehicle designs and control systems under various operating conditions. These same simulation techniques have now been introduced to the oilfield drilling industry and are delivering insights for more effective drilling tool designs, bottom hole assembly optimization, drilling severity minimization, dysfunction recognition and for drilling performance improvement with fewer downhole failures. Drilling is a non-linear, coupled and dynamic hydro-geomechanical process, the physics for all aspects of which must be captured to enable a robust automated drilling control process. Drill string, drilling tool and drill bit failures are frequently incorrectly blamed upon the invisible geology through which they drill. Field engineers frequently report more severe downhole vibrations at rotation speeds other than those predicted by linear frequency-based finite element critical speeds analyses. The same multi-body dynamics simulation techniques used by the automotive and aerospace industries, however, are now being applied to capture the non-linear aspects of the drilling process and provide more realistic predictions of drilling performance. Simulation validation is achieved by comparing virtual data to physical data with an implicit understanding of the uncertainties of each. Recommendations are presented for improving the usefulness and the quality of physical drilling data which simulation can then also help assure. The ultimate objective is to deliver better quality boreholes which are less costly with fewer drilling tool failures. These novel simulation techniques are enabling manufacturers to benefit from lower development costs and shorter times to market with more reliable proprietary drilling tool designs. Drilling contractors are using simulations to optimize top-drive controls and drill more effectively. Product developers are able to configure higher performing and more optimal bottom hole assemblies. Operators are able to reduce overall drilling costs with the potential benefits of higher performing drilling automation systems and greater production from better quality boreholes.
Yersinia enterocolitica infection, or yersiniosis, is a common cause of gastroenteritis in developing nations, but the disease is less common in the developed world. Yersiniosis typically presents as a self-limited gastroenteritis in an immunocompetent patient and rarely progresses to the more fulminant disseminated form. Certain patient populations are at greater risk of disseminated disease, and providers caring for these patients should have heightened suspicion for invasive disease. Patients dependent on serial transfusion therapy, such as those with inherited hemoglobinopathies, often have chronically elevated serum iron levels. These patients are at increased risk of fulminant yersiniosis due to the bacteria's siderophilic nature. Yersinia infection can be devastating in these patients, and early intervention with empiric antibiotics combined with targeted resuscitation can be essential in their care. The following case illustrates the utility for heightened surveillance, early intervention, and guided resuscitation in the management of this at-risk population.
This paper looks at some of the common maintenance tasks required by industry regulations such as PCI-DSS and state and federal regulators and evaluates the applicability of network management systems in complying with these requirements. The sample network tested includes 10 Windows servers, 30 Windows workstations, and 10 additional network elements from various vendors. Network management offerings from Spiceworks,ManageEngine, and GFI are tested and evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.