Oil industries generate large amounts of produced water containing organic contaminants, such as naphthenic acids (NA) and very high concentrations of inorganic salts. Recovery of potable water from produced water can be highly energy intensive is some cases due to its high salt concentration, and safe discharge is more suitable. Here, we explored catalytic properties of iron oxide (FexOy nanoparticles) functionalized membranes in oxidizing NA from water containing high concentrations of total dissolved solids (TDS) using persulfate as an oxidizing agent. Catalytic decomposition of persulfate by FexOy functionalized membranes followed pseudo-first order kinetics with an apparent activation energy of 18 Kcal/mol. FexOy functionalized membranes were capable of lowering the NA concentrations to less than discharge limits of 10 ppm at 40 °C. Oxidation state of iron during reaction was quantified. Membrane performance was investigated for extended period of time. A coupled process of advanced oxidation catalyzed by membrane and nanofiltration was also evaluated. Commercially available nanofiltration membranes were found capable of retaining NA from water containing high concentrations of dissolved salts. Commercial NF membranes, Dow NF270 (Dow), and NF8 (Nanostone) had NA rejection of 79% and 82%, respectively. Retentate for the nanofiltration was further treated with advanced oxidation catalyzed by FexOy functionalized membrane for removal of NA.
The Christchurch earthquakes have highlighted the mismatch in expectations between the engineering profession and society regarding the seismic performance of buildings. While most modern buildings performed as expected, many buildings have been, or are to be, demolished. The ownership, occupancy, and societal costs of only targeting life-safety as the accepted performance standard for building design are now apparent in New Zealand.
While the structural system has a significant effect on the seismic performance of the entire building, including the contents, it is only about 20% of the total building cost. Hence, structural engineers should view the seismic performance in a wider context, looking at all the systems of the building rather than just the damage to structural items and life-safety.
The next generation of performance-based seismic design procedures, outlined in the FEMA P-58 document, provide engineers with the tools to express the seismic performance of the entire building in terms of the future life loss, facility repair cost and repair time. This paper will outline the FEMA P-58 procedure and present the results of a comparative study of six different structural systems for a three storey commercial and laboratory building: moment frame; buckling restrained braced frame; viscously damped moment frame; Pres-Lam timber coupled-walls; cast-in-place reinforced concrete shear wall; and base isolated braced frame. Each system was analysed as a fully non-linear structure and the calculated drifts and floor accelerations were input into the FEMA P-58 PACT tool to evaluate the overall building performance. The PACT tool performs loss calculations for the expected casualties, repair cost, and repair time from which a QuakeStar or SEAONC rating for the building can be obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.