This paper describes several aspects of the physical layer and over the air interface of Loon. Loon utilizes stratospheric balloon-based high-altitude platforms (HAPs) that use Long-Term Evolution (LTE) to connect people with standard User Equipment (UEs) to the Internet. In particular, topics covered include the Loon prototype eNodeB (eNB) antenna pattern, the observed channel, UE battery life, and coexistence with terrestrial networks using the same spectrum. While channel models from a HAP to the ground have been well studied in the past, the use of polarization diversity to establish Multi-Input Multi-Output (MIMO) communication to real UEs below 1 GHz has not. In addition, a theoretical analysis of terrestrial coexistence and an analysis of the estimated impact on UE battery life when communicating with HAPs are presented. Finally, results from several measurement campaigns and from experiments with polarization diversity are presented as a spot check of theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.