Airborne synthetic aperture radar (Airborne SAR) can accurately locate key targets and regions by using the flight parameters of the aircraft and the relative position information between the aircraft and the target which can be obtained from the airborne positioning and orientation system (POS). In the course of flight, the aircraft will deviate from the ideal flight path due to atmospheric turbulence, which results in the calculation deviating from the actual target position. In order to improve the target positioning accuracy, it is necessary to study the influence of aircraft motion error on the target positioning error. This study discusses the positioning accuracy of single-view airborne SAR from the perspective of linear Range-Doppler algorithm (RDA), and deduces the multi-view airborne SAR positioning error transfer model based on the multi-view airborne SAR positioning model. Based on these, we analyze the main factors that affect the positioning accuracy of the two positioning methods in detail and quantitatively reveal the mechanism by which the multi-view airborne SAR positioning method can improve the target positioning accuracy compared with the single-view airborne SAR positioning method; we also solve the problem of course planning for multi-view airborne SAR optimal positioning. The research results can provide theoretical support for the analysis of factors influencing positioning error and the positioning error correction of airborne SAR.
Effective utilization of airborne synthetic-aperture (Airborne SAR) imagery often requires precise location of each image pixel. Historically, the positioning of airborne SAR imagery either relies on the use of reliable reference points to determine the relative position of the image, or requires the precise motion information of the aircraft and the characteristics of the SAR data collection system as input to determine the absolute position of the image. However, for many applications, the accuracy of traditional positioning methods is not high due to the challenge in obtaining the accurate geographic positions of reliable reference points and the inaccuracy of the recorded aircraft motion information. This study introduces an airborne SAR image planar positioning approach based on the premise that the systematic positioning error of the dual-view airborne SAR images are relatively consistent. The suggested planar positioning method applies the positioning auxiliary parameters of the initial ground-range airborne SAR image to ascertain the transformation relationship between the target’s initial geographic position and pixel position, and it then uses the equivalent equation for the position of the homologue point to assess the systematic positioning error of the SAR image and determine the geographic position of a pixel in a digital SAR image. This approach has advantages over previous techniques in that it requires no precise geographic position information of the ground reference points, and on the basis of using the RD model to accomplish coarse positioning of four corners of SAR image, it no longer needs aircraft trajectory data. Tests were conducted using two airborne SAR images actually captured, and the experimental results indicate that the proposed method can achieve high precision planar positioning of dual-view airborne SAR images. Error sources are analyzed and recommendations are given to improve image positioning accuracy in future airborne SARs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.