Superscript textThe III-V semiconductors materials and in particularly Indium Phosphide are a promising candidates for the elaboration of high speed electronic compounds. The importance of the interface study is increasing considerably in the last years to understand, the mechanism of interface formations and to control perfectly the technology of the elaborated compounds. This study presents an electrical characterization of InP(p)/InSb/Al2O3/ Au structures in the range of temperature varying from the temperature of liquid nitrogen to the temperature of 400°K. In order to give the evolution of electrical parameters of these structures with temperature, we have realized Capacitance-Voltage measurements at high frequency for different temperatures. The found results show that there is dispersion in the accumulation region as function with temperature. The quantity of positive charges in the insulator is estimated to 1.37×1012 atm/cm2 at room temperature. This value decreases slightly with increasing temperature. It varies fromSuperscript text 1.57×1012 atm/cm2 at 77°K to 1.12×1012 atm/cm2 at 400°K. The interface insulator/semiconductor of our samples presents a good electronical quality, the state density is equal to 4.1011 eV-1.cm-2 at room temperature, this one increases from 4.7×1010 eV-1.cm-2 to 7.1011 eV-1.cm-2 when temperature increases from 77°K to 400°K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.