Background: Haemoglobinopathies are inherited haemoglobin disorders that result in anaemia characterised by erythrocyte anisopoikilocytosis. Red cell distribution width (RDW) measures anisopoikiloytosis and is readily reported by haematology analysers as a complete blood count parameter. The utility of RDW as a diagnostic marker of haemoglobinopathies in Kenya remains undetermined and undocumented.Objective: This study aimed to determine the diagnostic efficacy of RDW in discriminating haemoglobinopathy and haemoglobinopathy-free cases in Kenya.Methods: The case-control study used randomly selected haematology analyser outputs for haemoglobinopathy-free (241, 49.4%) and haemoglobinopathy cases (247, 50.1%) aged 1 month to 66 years old tested in the Aga Khan Hospital, Kisumu, and its satellite centres in western Kenya from 01 January 2015 to 31 December 2020. Results were verified using high performance liquid chromatography. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic power of RDW as a biomarker for sickle cell disease (SCD) and sickle cell trait phenotypes and β-thalassaemia.Results: The RDW showed diagnostic significance in SCD phenotypes at 21.1 ROC curve coordinate with 67.7% sensitivity, 90.0% specificity, 0.789 accuracy, 70.5% positive predictive validity, 88.8% negative predictive validity, 6.77 positive likelihood ratio, 0.36 negative likelihood ratio and 18.94 (11.4–31.4) odds ratio.Conclusion: An RDW of 21.1% is potentially a predictor of SCD haemoglobin phenotypes and should be included in the haematology screening algorithm as a critical value, above which suspected cases qualify to be investigated for SCD.
Background Western Kenya, being a malaria-endemic region, has a high prevalence of hemoglobinopathies mostly sickle cell and thalassemia. The hemoglobin fractions or variants, HbA, HbA2, and HbF, serve as biomarkers for the detection of hemoglobinopathies and are commonly used in laboratory screening and diagnosis of these diseases. Diagnosis of diseases entails accurate and precise representation of a patient’s condition. This is the main aim of International Organization for Standardization (ISO) certified laboratories of offering a reliable diagnostic guide for the various diseases. For this to be realized, valid normal reference ranges are required. Such are reference values that are valid for local population of the setting where they are to be used is critical in quantitative diagnostic tests. Local normal reference ranges are necessary because research has revealed variations in the phenotypic expression of the genes for biological characteristics in humans inhabiting different geographical regions, owing to epigenetic differences imposed by physical environments, and associated sociocultural influences, even in cases of similarity in gene patterns. No local normal reference ranges for hemoglobin fractions are reported for Kenya and Africa as a whole. Laboratories therefore continue to use those found in textbooks and brochures from manufacturers of diagnostic reagents, which are derived from populations of geographical locations faraway and socioculturally different from Kenya. This could be misleading in diagnosis of hemoglobinopathies in western Kenya and indeed all of Kenya. Therefore, the present study aimed at exploring the possibility of developing local normal reference ranges for the concentrations of hemoglobin fractions, HbA, HbA2, and HbF, based on hemoglobinopathy-free, non-anemic subjects attending the Aga Khan Hospital Kisumu in western Kenya and its satellites. The hospital serves the populations inhabiting in and predominantly indigenous to western Kenya. Objectives To derive the 95% confidence intervals for hemoglobin fractions (HbA, HbA2, and HbF), evaluate the potential of these intervals as normal reference values for the local population by use of concentrations for non-anemic hemoglobinopathy-free subjects and compare the performance of the current HPLC normal ranges with those intervals we derived, based on receiver operating characteristic (ROC) curve. Materials and methods This was an analytical retrospective study using routine assay results from laboratory database for 386 non-anemic, HPLC-confirmed hemoglobinopathy-free subjects. Blood samples were obtained at the Kisumu Aga Khan Hospital and its satellite sites in western Kenya, covering January 2015 to November 9, 2021. The data for Hb fractions were nonparametric, and so confidence intervals, together with the age of subjects, were thus expressed as the median and interquartile range (IQR). Data for the gender and other characteristics of study subjects were summarized in frequencies and proportions, Kruskal-Wallis H-test was used to test the significance of differences in Hb concentrations between stations and age groups, while Mann-Whitney U-test is between males and females. The receiver operating characteristic (ROC) curve was used to evaluate the potential of the derived confidence intervals as normal reference values in comparison with the commonly used normal values for hemoglobin fractions. Results The potential normal reference intervals were computed as 95% confidence intervals (CI) for median percentage levels for the concentrations of the Hb fractions HbA, HbA2, and HbF for the hemoglobinopathy-free patients. The overall confidence intervals were derived first for the combined sample of all the hemoglobinopathy-free patients combined together irrespective station where blood specimens were obtained, age or gender, and then followed by those for separate groups, stratified based on station, age, and gender. The overall median values for the hemoglobin fractions were hemoglobin: A (HbA) 87.7, IQR = 5.7, 95% CI = 76.3–99.1; hemoglobin A2 (HbA2), 3.0, IQR = 0.6; 95% CI = 1.8–4.2; and hemoglobin F (HbF), 0.8, IQR = 0.8; 95% CI = 0.00–2.4, with the P window, 4.98, IQR = 0.4; 95% CI = 4.18–5.78. The commonly used normal reference ranges for the hemoglobin fractions were as follows: HbA 95–98%, had an accuracy of 57.5%, HbA2 of 1.5–3.5%, had an accuracy of 95.9% in grading the presumed healthy population as hemoglobinopathy-free, while HbF 0–2.0 was equal to that established by the present study. Conclusion It is important to report that the use of normal range for HbA of 95–98% published by Kratz et al. [1] in western Kenya has a potential threat of misdiagnosis of normal population and thus needs urgent review as it lacked efficacy (p = 0.795) in grading hemoglobinopathy-free subjects as normal with a poor accuracy of 57.5%, a sensitivity of 100%, specificity of 0.3%, positive predictive validity of 15.1%, negative predictive validity of 1%, and 1.03 positive likelihood ratio. However, the traditional normal range for HbA2 of 1.5–3.5% on use in western Kenya may be retained as it was effective (p < 0.0001) in grading majority of study subjects as normal with an accuracy of 95.9%, sensitivity of 98.4%, specificity of 93.3%, positive predictive validity of 99.7%, negative predictive validity of 70.0%, 14.7 positive likelihood ratio, and 0.017 negative likelihood ratio. Similarly, the existing normal range for HbF of 0–2.0 on use was almost the same as the one we derived of 0–2.4 and therefore may be retained for use in western Kenya. It is anticipated that the finding of this study will help improve the management of hemoglobinopathies in Kenya and Africa at large, by contributing to improvement in the validity of the clinical-pathologic interpretation assay results for the percentage values for the Hb fractions.
Background Red cell distribution width (RDW) measures the extent of variation in red blood cell (RBC) volume in terms of coefficient of variation. It reflects the degree of variation in RBC’s sizes and shapes, characteristic of iron deficiency and anemias involving RBC destruction, especially hemoglobinopathies. Its values are often available as one of the RBC indices generated as complete blood cell count (CBC) using automated hematology analyzers. Hemoglobinopathies are highly prevalent in malaria-endemic geographical settings like the Sub-Saharan African which has over 200,000 currently documented annual major hemoglobinopathies with an alarming mortality rate of 50–90% by the age of 5 years usually undiagnosed. With a vast growing majority of hemoglobinopathy carriers, this public health problem is projected to escalate by the year 2050 due to unaffordable laboratory tests for screening of newborns and populations as recommended by World Health Organization in resource-limited settings. Therefore, innovative of a cost-effective diagnostic method would improve the survival of these children. The current study aimed to evaluate the overall ability of RDW in discriminating hemoglobinopathy and hemoglobinopathy-free cases within the Lake Victoria Economic Block region of Western Kenya served partly by the Aga Khan Hospital, Kisumu. Objective To determine the significance of RDW as a tool to differentiate between individuals with hemoglobinopathies and those without. Method This was a cross-sectional retrospective comparative hospital-based study that analyzed data from the hematology laboratory database for patients examined using high-performance liquid chromatography during the years 2015–2020. The study consisted of 488 participants (49.4%, n = 241 control; 50.6% n = 247 case, p = 0.786) aged between 1 month and 66 years selected conveniently through census. The relationship between RDW of the controls and cases was analyzed using Mann–Whitney U, Kruskal–Wallis tests among population groups and Dunn’s post hoc test within groups since the data were non-normally distributed. Results The RDW cutoff value was computed at 95% confidence interval (CI), and values greater than this indicated a diagnosis of hemoglobinopathy. Conclusion RDW at 95% CI was 19.9 [14.5 + (2.7 × 2 = 19.9)] cutoff point which proved to be an excellent screening tool for sickle cell disease phenotypes in Western Kenya but would generate many false positive and false negatives for pure Hb AS. RDW is a poor screening tool for, Hb AS + HbF, Hb AS + β thal and β-thalassemia since it could not differentiate diseased from non-diseases populations. Even though RDW proved to be a poor screening tool for beta thalassemia, other complete blood count (CBC) parameters such as MCV and red cell count can be used to identify thalassemia syndromes as well as iron deficiency anemia. Though out of the scope of this work, highlighting the significance of these parameters in addition to the RDW would improve its feasibility as a screening tool for all hemoglobinopathies. Normal reference range for children ≤ 5 years needs to be developed using prospective data for precise marking of disorders associated with red cell anisocytosis, and individuals ≥ 6 years can share RDW normal reference range regardless of their gender.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.