BackgroundEstrogen is formed by the enzyme aromatase (CYP19A1) and signals via three identified receptors ERα (ESR1), ERß (ESR2), and the G protein-coupled estrogen receptor (GPER). Understanding the relative contribution of each receptor to estrogenic signaling may elucidate the disparate effects of this sex hormone across tissues, and recent developments in PCR technology allow absolute quantification and direct comparison of multiple targets. We hypothesized that this approach would reveal tissue- and sex-specific differences in estrogen receptor mRNA.MethodsESR1, ESR2, GPER, and CYP19A1 were measured in four cardiovascular tissues (heart, aorta, kidney, and adrenal gland), three brain areas (somatosensory cortex, hippocampus, and prefrontal cortex), and reproductive tissues (ovaries, mammary gland, uterus, testes) from six male and six female adult Sprague-Dawley rats.ResultsGPER mRNA expression was relatively stable across all tissues in both sexes, ranging from 5.49 to 113 copies/ng RNA, a 21-fold difference. In contrast, ESR1/ESR2 were variable across tissues although similar within an organ system. ESR1 ranged from 4.46 to 614 copies/ng RNA (138-fold difference) while ESR2 ranged from 0.154 to 83.1 copies/ng RNA (540-fold). Significant sex differences were broadly absent except for renal ESR1 (female 206 vs. male 614 copies/ng RNA, P < 0.0001) and GPER (62.0 vs. 30.2 copies/ng RNA, P < 0.05) as well as gonadal GPER (5.49 vs. 47.5 copies/ng RNA, P < 0.01), ESR2 (83.1 vs. 0.299 copies/ng RNA, P < 0.01), and CYP19A1 (322 vs. 7.18 copies/ng RNA, P < 0.01). Cardiovascular tissues showed a predominance of ESR1, followed by GPER. In contrast, GPER was the predominant transcript in the brain with similarly low levels of ESR1 and ESR2. CYP19A1 was detected at very low levels except for reproductive tissues and the hippocampus.ConclusionWhile the data indicates a lack of sex differences in most tissues, significant differences were found in the range of receptor gene expression across tissues as well as in the receptor profile between organ systems. The data provide a guide for future studies by establishing estrogen receptor expression across multiple tissues using absolute PCR quantification. This knowledge on tissue-specific estrogen receptor profiles will aid the development of hormonal therapies that elicit beneficial effects in specific tissues.
This review discusses sexual dimorphism in arterial stiffening, disease pathology interactions, and the influence of sex on mechanisms and pathways. Arterial stiffness predicts cardiovascular mortality independent of blood pressure. Patients with increased arterial stiffness have a 48% higher risk for developing cardiovascular disease. Like other cardiovascular pathologies, arterial stiffness is sexually dimorphic. Young women have lower stiffness than aged-matched men, but this sex difference reverses during normal aging. Estrogen therapy does not attenuate progressive stiffening in postmenopausal women, indicating that currently prescribed drugs do not confer protection. Although remodeling of large arteries is a protective adaptation to higher wall stress, arterial stiffening increases afterload to the left ventricle and transmits higher pulsatile pressure to smaller arteries and target organs. Moreover, an increase in aortic stiffness may precede or exacerbate hypertension, particularly during aging. Additional studies are needed to elucidate the mechanisms by which females are protected from arterial stiffness to provide insight into its mechanisms and, ultimately, therapeutic targets for treating this pathology.
Our previous work showed that the G protein-coupled estrogen receptor (GPER) is protective in the vasculature and kidneys during angiotensin (Ang) II-dependent hypertension by inhibiting oxidative stress. The goal of the current study was to assess the impact of GPER deletion on sex differences in Ang II-induced hypertension and oxidative stress. Male and female wildtype and GPER knockout mice were implanted with radiotelemetry probes for measurement of baseline blood pressure before infusion of Ang II (700 ng/kg/min) for 2 weeks. Mean arterial pressure was increased to the same extent in all groups, but female wildtype mice were protected from Ang II-induced increases in pulse pressure, aortic wall thickness, and Nox4 mRNA. In vitro studies using vascular smooth muscle cells found that pre-treatment with the GPER agonist G-1 inhibited Ang II-induced ROS and NADP/NADPH. Ang II increased while G-1 decreased Nox4 mRNA and protein. The effects of Ang II were blocked by losartan and Nox4 siRNA, while the effects of G-1 were inhibited by adenylyl cyclase inhibition and mimicked by phosphodiesterase inhibition. We conclude that during conditions of elevated Ang II, GPER via the cAMP pathway suppresses Nox4 transcription to limit ROS production and prevent arterial stiffening. Taken together with our previous work, this study provides insight into how acute estrogen signaling via GPER provides cardiovascular protection during Ang II hypertension and potentially other diseases characterized by increased oxidative stress.
Because arterial stiffness increases following menopause, estrogen may be a protective factor. Our previous work indicates that the GPER (G protein–coupled estrogen receptor) mediates estrogen’s vascular actions. In the current study, we assessed arterial stiffening using pulse wave velocity (PWV), a clinically relevant measurement that independently predicts cardiovascular mortality. We hypothesized that genetic deletion of GPER would attenuate sex differences in PWV and would be associated with changes in passive vascular mechanics. Control and Ang II (angiotensin II)–infused male and female wild-type and GPER knockout mice were assessed for blood pressure, intracarotid PWV, cardiac function, passive biaxial mechanics, constitutive modeling, and histology. Sex differences in PWV and left ventricular mass were detected in wild-type mice but absent in GPER knockout and Ang II–infused mice, regardless of genotype. Despite lower PWV, the material stiffness of female wild-type carotids was greater than males in control conditions and was maintained in response to Ang II due to increased wall thickness. PWV positively correlated with unloaded thickness as well as circumferential and axial stiffness only in females. In contrast, blood pressure positively associated with circumferential and axial stiffness in males. Taken together, we found that female wild-type mice were unique in their vascular adaptation to hypertension by increasing wall thickness to maintain stiffness. Given that carotid arteries are easily accessible clinically, systematic assessment of intracarotid PWV in women may provide insight into vascular damage that cannot be assumed from blood pressure measurements alone.
Aging is a nonmodifiable risk factor for cardiovascular disease associated with arterial stiffening and endothelial dysfunction. We hypothesized that sex differences exist in vascular aging processes and would be attenuated by global deletion of the G protein-coupled estrogen receptor. Blood pressure was measured by tail cuff plethysmography, pulse wave velocity (PWV) and echocardiography were assessed with high resolution ultrasound, and small vessel reactivity was measured using wire myography in adult (25 weeks) and middle-aged (57 weeks) male and female mice. Adult female mice displayed lower blood pressure and PWV, but this sex difference was absent in middle-aged mice. Aging significantly increased PWV but not blood pressure in both sexes. Adult female carotids were more distensible than males, but this sex difference was lost during aging. Acetylcholine-induced relaxation was greater in female than male mice at both ages, and only males showed aging-induced changes in cardiac hypertrophy and function. GPER deletion removed the sex difference in PWV as well as ex vivo stiffness in adult mice. The sex difference in blood pressure was absent in KO mice and was associated with endothelial dysfunction in females. These findings indicate that the impact of aging on arterial stiffening and endothelial function is not the same in male and female mice. Moreover, nongenomic estrogen signaling through GPER impacted vascular phenotype differently in male and female mice. Delineating sex differences in vascular changes during healthy aging is an important first step in improving early detection and sex-specific treatments in our aging population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.