Mangroves could be key ecosystems in strategies addressing the mitigation of climate changes through carbon storage. However, little is known regarding the carbon stocks of these ecosystems, particularly below-ground. This study was carried out in the mangrove forests of Sofala Bay, Central Mozambique, with the aim of quantifying carbon stocks of live and dead plant and soil components. The methods followed the procedures developed by the Center for International Forestry Research (CIFOR) for mangrove forests. In this study, we developed a general allometric equation to estimate individual tree biomass and soil carbon content (up to 100 cm depth). We estimated the carbon in the whole mangrove ecosystem of Sofala Bay, including dead trees, wood debris, herbaceous, pneumatophores, litter and soil. The general allometric equation for live trees derived was [Above-ground tree dry weight (kg) = 3.254 × exp(0.065 × DBH)], root mean square error (RMSE = 4.244), and coefficient of determination (R 2 = 0.89). The average total carbon storage of Sofala Bay mangrove was 218.5 Mg·ha , of which around 73% are stored in the soil. Mangrove conservation has the potential for REDD+ programs, especially in regions like Mozambique, which contains extensive mangrove areas with high deforestation and degradation rates.
BackgroundWorldwide, forests are an important carbon sink and thus are key to mitigate the effects of climate change. Mountain moist evergreen forests in Mozambique are threatened by agricultural expansion, uncontrolled logging, and firewood collection, thus compromising their role in carbon sequestration. There is lack of local tools for above-ground biomass (AGB) estimation of mountain moist evergreen forest, hence carbon emissions from deforestation and forest degradation are not adequately known. This study aimed to develop biomass allometric equations (BAE) and biomass expansion factor (BEF) for the estimation of total above-ground carbon stock in mountain moist evergreen forest.MethodsThe destructive method was used, whereby 39 trees were felled and measured for diameter at breast height (DBH), total height and the commercial height. We determined the wood basic density, the total dry weight and merchantable timber volume by Smalian’s formula. Six biomass allometric models were fitted using non-linear least square regression. The BEF was determined based on the relationship between bole stem dry weight and total dry weight of the tree. To estimate the mean AGB of the forest, a forest inventory was conducted using 27 temporary square plots. The applicability of Marzoli’s volume equation was compared with Smalian’s volume equation in order to check whether Marzoli’s volume from national forest inventory can be used to predict AGB using BEF.ResultsThe best model was the power model with only DBH as predictor variable, which provided an estimated mean AGB of 291 ± 141 Mg ha−1 (mean ± 95% confidence level). The mean wood basic density of sampled trees was 0.715 ± 0.182 g cm−3. The average BEF was of 2.05 ± 0.15 and the estimated mean AGB of 387 ± 126 Mg ha−1. The BAE from miombo woodland within the vicinity of the study area underestimates the AGB for all sampled trees. Chave et al.’s pantropical equation of moist forest did not fit to the Moribane Forest Reserve, while Brown’s equation of moist forest had a good fit to the Moribane Forest Reserve, having generated 1.2% of bias, very close to that generated by the selected model of this study. BEF showed to be reliable when combined with stand mean volume from Marzoli’s National Forestry Inventory equation.ConclusionThe BAE and the BEF function developed in this study can be used to estimate the AGB of the mountain moist evergreen forests at Moribane Forest Reserve in Mozambique. However, the use of the biomass allometric model should be preferable when DBH information is available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.