The accumulation of unfolded protein in the endoplasmic reticulum (ER) attenuates protein synthesis initiation through phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha) at Ser51. Subsequently, transcription of genes encoding adaptive functions including the glucose-regulated proteins is induced. We show that eIF2alpha phosphorylation is required for translation attenuation, transcriptional induction, and survival in response to ER stress. Mice with a homozygous mutation at the eIF2alpha phosphorylation site (Ser51Ala) died within 18 hr after birth due to hypoglycemia associated with defective gluconeogenesis. In addition, homozygous mutant embryos and neonates displayed a deficiency in pancreatic beta cells. The results demonstrate that regulation of translation through eIF2alpha phosphorylation is essential for the ER stress response and in vivo glucose homeostasis.
In vertebrates, three proteins--PERK, IRE1alpha, and ATF6alpha--sense protein-misfolding stress in the ER and initiate ER-to-nucleus signaling cascades to improve cellular function. The mechanism by which this unfolded protein response (UPR) protects ER function during stress is not clear. To address this issue, we have deleted Atf6alpha in the mouse. ATF6alpha is neither essential for basal expression of ER protein chaperones nor for embryonic or postnatal development. However, ATF6alpha is required in both cells and tissues to optimize protein folding, secretion, and degradation during ER stress and thus to facilitate recovery from acute stress and tolerance to chronic stress. Challenge of Atf6alpha null animals in vivo compromises organ function and survival despite functional overlap between UPR sensors. These results suggest that the vertebrate ATF6alpha pathway evolved to maintain ER function when cells are challenged with chronic stress and provide a rationale for the overlap among the three UPR pathways.
Summary
The unfolded protein response (UPR) is linked to metabolic dysfunction, yet it is not known how ER disruption might influence metabolic pathways. Using a multilayered genetic approach, we find that mice with genetic ablations of either ER stress sensing pathways (ATF6α, eIF2α, IRE1α), or of ER quality control (p58IPK), share a common dysregulated response to ER stress that includes the development of microvesicular steatosis. The rescue of ER protein processing capacity by the combined action of UPR pathways during stress prevents the suppression of a subset of metabolic transcription factors that regulate lipid homeostasis. This suppression occurs in part by unresolved ER stress perpetuating expression of the transcriptional repressor CHOP. As a consequence, metabolic gene expression networks are directly responsive to ER homeostasis. These results reveal an unanticipated direct link between ER homeostasis and the transcriptional regulation of metabolism and suggest mechanisms by which ER stress might underlie microvesicular steatosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.