A new type of polymer-infiltrated-ceramic-network composites (PICNs) was fabricated by infiltrating methacrylate-based monomers into partially sintered porous ceramics. The mechanical properties (flexural strength, flexural modulus, elastic modulus, Vickers hardness, fracture toughness) were investigated and compared with that of the natural tooth and common commercial CAD/CAM blocks. Our results indicated that sintering temperature and corresponding density of porous ceramics have an obvious influence on the mechanical properties, and PICNs could highly mimic the natural tooth in mechanical properties. The biocompatibility experiments evaluated through in vitro cell attachment and proliferation of BMSCs showed good biocompatibility. The mechanical properties and biocompatibility confirmed that PICN could be a promising candidate for CAD/CAM blocks for dental restoration.
Dental restorative materials with high mechanical properties and biocompatible performances are promising. In this work, polymer-infiltrated-ceramic-network materials (PICNs) were fabricated via infiltrating polymerizable monomers into porous ceramic networks and incorporated with hydroxyapatite nano-powders. Our results revealed that the flexural strength can be enhanced up to 157.32 MPa, and elastic modulus and Vickers hardness can be achieved up to 19.4 and 1.31 GPa, respectively, which are comparable with the commercial computer-aided design and computer-aided manufacturing (CAD/CAM) blocks. Additionally, the adhesion and spreading of rat bone marrow mesenchymal stem cells (rBMSCs) on the surface of such materials can be improved by adding hydroxyapatite, which results in good biocompatibility. Such PICNs are potential applicants for their application in the dental restoration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.