We performed a combination of quantum chemical calculations and molecular dynamics simulations to assess the stability of various size NH3n− ammonia cluster anions up to n = 32 monomers. In the n = 3–8 size range, cluster anions are optimized and the vertical detachment energy of the excess electron (VDE) from increasing size clusters is computed using various level methods including density functional theory, MP2, and coupled-cluster singles doubles with perturbative triples. These clusters bind the electrons in nonbranched hydrogen bonding chains in dipole bound states. The VDE increases with size from a few millielectron volt up to ∼200 meV. The electron binding energy is weaker than that in water clusters but comparable to small methanol cluster VDEs. We located the first branched hydrogen bonding cluster that binds the excess electron at n = 7. For larger (n = 8–32) clusters, we generated cold, neutral clusters by semiempirical and ab initio molecular dynamics simulations and added an extra electron to selected neutral configurations. VDE calculations on the adiabatic and the relaxed anionic structures suggest that the n = 12–32 neutral clusters weakly bind the excess electron. Electron binding energies for these clusters (∼100 meV) appear to be significantly weaker than those extrapolated from experimental data. The observed excess electron states are diffuse and localized outside the molecular frame (surface states) with minor (∼1%) penetration to the nitrogen frontier orbitals. Stable minima with excess electron states surrounded by solvent molecules (cavity states) were not found in this size regime.
We investigated excess electron solvation dynamics in (NH 3 ) n – ammonia clusters in the n = 8–32 size range by performing finite temperature molecular dynamics simulations. In particular, we focused on three possible scenarios. The first case is designed to model electron attachment to small neutral ammonia clusters ( n ≤ ∼10) that form hydrogen-bonded chains. The excess electron is bound to the clusters via dipole bound states, and persists with a VDE of ∼160 meV at 100 K for the n = 8 cluster. The coupled nuclear and electronic relaxation is fast (within ∼100 fs) and takes place predominantly by intermolecular librational motions and the intramolecular umbrella mode. The second scenario illustrates the mechanism of excess electron attachment to cold compact neutral clusters of medium size (8 ≤ n ≤ 32). The neutral clusters show increasing tendency with size to bind the excess electron on the surface of the clusters in weakly bound, diffuse, and highly delocalized states. Anionic relaxation trajectories launched from these initial states provide no indication for excess electron stabilization for sizes n < 24. Excess electrons are likely to autodetach from these clusters. The two largest investigated clusters ( n = 24 and 32) can accommodate the excess electron in electronic states that are mainly localized on the surface, but they may be partly embedded in the cluster. In the last 500 fs of the simulated trajectories, the VDE of the solvated electron fluctuates around ∼200 meV for n = 24 and ∼500 meV for n = 32, consistent with the values extrapolated from the experimentally observed linear VDE– n –1/3 trend. In the third case, we prepared neutral ammonia cluster configurations, including an n = 48 cluster, that contain possible electron localization sites within the interior of the cluster. Excess electrons added to these clusters localize in cavities with high VDEs up to 1.9 eV for n = 48. The computed VDE values for larger clusters are considerably higher than the experimentally observed photoelectric threshold energy for the solvated electron in bulk ammonia (∼1.4 eV). Molecular dynamics simulations launched from these initial cavity states strongly indicate, however, that these cavity structures exist only for ∼200 fs. During the relaxation the electron leaves the cavity and becomes delocalized, while the cluster loses its initial compactness.
Az írás az Agrárminisztérium Földügyi és Térinformatikai Főosztálya, a Miniszterelnökség Ingatlannyilvántartási és Térképészeti Főosztálya, valamint a Magyar Földmérési, Térképészeti és Távérzékelési Társaság (MFTTT) vezetőinek évértékelő és az új év tekintetében feladatismertető összefoglalója. A földmérés és térképészet ágazati irányításában az egyik legfontosabb feladat 2022-ben is az ágazat működését meghatározó jogszabályok módosításának előkészítése volt. Az új esztendőben elvégzendő feladatok közül a főhatóságok életében kiemelt jelentőséggel bír az osztatlan közös tulajdon megszüntetésére irányuló program folytatása és az e-ingatlan-nyilvántartási projekt beindítása. Az MFTTT célja változatlanul a magyar földmérés és térképészet szakmai-társadalmi eseményeinek szervezése, koordinálása, az elért eredmények közreadása hazai és nemzetközi szinten egyaránt, valamint az ehhez szükséges szervezeti keretek fenntartása.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.