Since its development, the ionophore BAPTA (1,2‐bis(2‐aminophenoxy)‐ethane‐N,N,N’,N’‐tetraacetic acid) has been used unchanged in calcium sensing applications. In this work we present a comprehensive experimental and theoretical study of novel alterations in the structure of BAPTA, with a focus on the systematic modification of the chain connecting the two aromatic rings of the molecule (denoted as “linker”). A bis‐(diethylamino)xantene fluorophore was also attached to the structures in a fixed position and the structure‐fluorescence response relationship of these molecules was investigated in addition. The effect of the linker's length, the number of oxygen atoms in this chain and even the removal of one of the rings was tested; these all proved to significantly alter the characteristics of the compounds. For example, it was found that the second aromatic ring of BAPTA is not essential for the turn‐on of the fluorescence. We also demonstrated that successful sensing can be realized even by replacing the chain with a single oxygen atom, which suggests the availability of a new calcium binding mode of the chelator. The reliable turn‐on characteristic, the steep Ca2+ fluorescence titration curve and the intense fluorescence emission combine to make this compound a prospective candidate as a calcium sensing molecular probe in diagnostic neurobiological applications.
Aromatic isocyanides have gained a lot of attention lately as promising antifungal and anticancer drugs, as well as high-performance fluorescent analytical probes for the detection of toxic metals, such as mercury, even in vivo. Since this topic is relatively new and aromatic isocyanides possess unique photophysical properties, the understanding of structure–behavior relationships and the preparation of novel potentially biologically active derivatives are of paramount importance. Here, we report the photophysical characterization of 1,5-diisocyanonaphthalene (DIN) backed by quantum chemical calculations. It was discovered that DIN undergoes hydrolysis in certain solvents in the presence of oxonium ions. By the careful control of the reaction conditions for the first time, the nonsymmetric product 1-formamido-5-isocyanonaphthalene (ICNF) could be prepared. Contrary to expectations, the monoformamido derivative showed a significant solvatochromic behavior with a ~50 nm range from hexane to water. This behavior was explained by the enhanced H-bond-forming ability of the formamide group. The significance of the hydrolysis reaction is that the isocyano group is converted to formamide in living organisms. Therefore, ICNF could be a potential drug (for example, antifungal) and the reaction can be used as a model for the preparation of other nonsymmetric formamido–isocyanoarenes. In contrast to its relative 1-amino-5-iscyanonaphthalene (ICAN), ICNF is highly fluorescent in water, enabling the development of a fluorescent turnoff probe.
The 3-(azetidin-1-yl)propan-1-amine moiety is present in various potentially pharmacologically-active molecules and can be of interest also for the design of metal-complexing agents. In the present study, a new, one-pot protocol using mild conditions has been developed for the straightforward synthesis of various drug-like Naminopropyl scaffolds. The process combines azetidine dimerization with a subsequent functionalization such as alkylation or amide formation. Analyzing more in detail the first step, the conditions (concentration, catalyst, solvent, temperature) affecting azetidine ring opening and controlled dimerization were investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.