We prove the following theorem. Let (a 1 , . . . , am, c 12 , . . . , c 1m ) be a spanning von Neumann m-frame of a modular lattice L, and let (u 1 , . . . , un, v 12 , . . . , v 1n ) be a spanning von Neumann n-frame of the interval [0, a 1 ]. Assume that either m ≥ 4, or L is Arguesian and m ≥ 3. Let R * denote the coordinate ring of (a 1 , . . . , am, c 12 , . . . , c 1m ). If n ≥ 2, then there is a ring S * such that R * is isomorphic to the ring of all n × n matrices over S * . If n ≥ 4 or L is Arguesian and n ≥ 3, then we can choose S * as the coordinate ring of (u 1 , . . . , un, v 12 , . . . , v 1n ).