The solvent effect on the photophysical and photochemical properties of the iodides of three trans (E) isomers of 2-D-vinyl,1-methylpyridinium, where D is a donor group (4-dimethylaminophenyl, 3,4,5-trimethoxyphenyl and 1-pyrenyl), was studied by stationary and transient absorption techniques. The results obtained allowed the negative solvatochromism and relaxation pathways of the excited states in the singlet manifold to be reasonably interpreted. Resorting to ultrafast absorption techniques and DFT calculations allowed information on the excited state dynamics and the role of the solvent-controlled intramolecular charge transfer (ICT) processes to be obtained. The structure-dependent excited state dynamics in nonpolar solvents, where the ICT is slower than solvent rearrangement, and in polar solvents, where an opposite situation is operative, was thus explained. The push-pull character of the three compounds, particularly the anilino-derivative, suggests their potential application in optoelectronics.
We report here a joint experimental and theoretical study of a quadrupolar, two-branched pyridinium derivative of interest as a potential non-linear optical material. The spectral and photophysical behaviour of this symmetric system is greatly affected by the polarity of the medium. A very efficient photoinduced intramolecular charge transfer, surprisingly more efficient than in the dipolar asymmetric analogue, is found to occur by femtosecond resolved transient absorption spectroscopy. TD-DFT calculations are in excellent agreement with these experimental findings and predict large charge displacements in the molecular orbitals describing the ground state and the lowest excited singlet state. The theoretical study also revealed that in highly polar media the symmetry of the excited state is broken giving a possible explanation to the fluorescence and transient absorption spectra resembling those of the one-branched analogous compound in the same solvents. The present study may give an important insight into the excited state deactivation mechanism of cationic (donor-π-acceptor-π-donor)(+) quadrupolar compounds characterised by negative solvatochromism, which are expected to show significant two-photon absorption (TPA). Moreover, the water solubility of the investigated quadrupolar system may represent an added value in view of the most promising applications of TPA materials in biology and medicine.
A series of new naphthalimide and phenothiazine-based push−pull systems (NPI-PTZ1−5), in which we structurally modulate the oxidation state of the sulfur atom in the thiazine ring, i.e., S(II), S(IV), and S(VI), was designed and synthesized by the Pd-catalyzed Sonogashira cross-coupling reaction. The effect of the sulfur oxidation state on the spectral, photophysical, and electrochemical properties was investigated. The steady-state absorption and emission results show that oxygen functionalization greatly improves the optical (absorption coefficient and fluorescence efficiency) and nonlinear optical (hyperpolarizability) features. The cyclic voltammetry experiments and the quantum mechanical calculations suggest that phenothiazine is a stronger electron donor unit relative to phenothiazine-5-oxide and phenothiazine-5,5-dioxide, while the naphthalimide is a strong electron acceptor in all cases. The advanced ultrafast spectroscopic measurements, transient absorption, and broadband fluorescence up conversion give insight into the mechanism of photoinduced intramolecular charge transfer. A planar intramolecular charge transfer (PICT) and highly fluorescent excited state are populated for the oxygen-functionalized molecules NPI-PTZ2,3 and NPI-PTZ5; on the other hand, a twisted intramolecular charge transfer (TICT) state is produced upon photoexcitation of the oxygen-free derivatives NPI-PTZ1 and NPI-PTZ4, with the fluorescence being thus significantly quenched. These results prove oxygen functionalization as a new effective synthetic strategy to tailor the photophysics of phenothiazine-based organic materials for different optoelectronic applications. While oxygen-functionalized compounds are highly fluorescent and promising active materials for current-to-light conversion in organic light-emitting diode devices, oxygen-free systems show very efficient photoinduced ICT and may be employed for light-to-current conversion in organic photovoltaics.
Newly synthesized perylene diimide dimers were investigated as nonfullerene electron acceptors for organic solar cells. In particular, two analogous positional isomers exhibiting twisted vs planar geometries were prepared to make a direct comparison of their optical and electronic properties. These properties were investigated to provide information regarding the impact of the nonfullerene acceptor geometry on the ultimate photovoltaic performance. The two isomers exhibited strikingly different optical and photophysical properties in solution as well as in film. The ultrafast spectroscopic investigation in solution revealed the occurrence of charge transfer upon photoexcitation, which takes place more efficiently in the planar isomer. This is also supported by theoretical simulations. The planar conformation exhibits higher aggregation in the neat film as well as in the blend. However, our results suggest that the dominance of intramolecular charge transfer in the planar isomer is the crucial factor in determining the improved power conversion efficiency of organic solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.