The joint effects of interacting environmental factors on key demographic parameters can exacerbate or mitigate the separate factors’ effects on population dynamics. Given ongoing changes in climate and land use, assessing interactions between weather and food availability on reproductive performance is crucial to understand and forecast population dynamics. By conducting a feeding experiment in 4 years with different weather conditions, we were able to disentangle the effects of weather, food availability and their interactions on reproductive parameters in an expanding population of the red kite (Milvus milvus), a conservation-relevant raptor known to be supported by anthropogenic feeding. Brood loss occurred mainly during the incubation phase, and was associated with rainfall and low food availability. In contrast, brood loss during the nestling phase occurred mostly due to low temperatures. Survival of last-hatched nestlings and nestling development was enhanced by food supplementation and reduced by adverse weather conditions. However, we found no support for interactive effects of weather and food availability, suggesting that these factors affect reproduction of red kites additively. The results not only suggest that food-weather interactions are prevented by parental life-history trade-offs, but that food availability and weather conditions are crucial separate determinants of reproductive output, and thus population productivity. Overall, our results suggest that the observed increase in spring temperatures and enhanced anthropogenic food resources have contributed to the elevational expansion and the growth of the study population during the last decades.
Food shortage challenges the development of nestlings; yet, to cope with this stressor, nestlings can induce stress responses to adjust metabolism or behaviour. Food shortage also enhances the antagonism between siblings, but it remains unclear whether the stress response induced by food shortage operates via the individual nutritional state or via the social environment experienced. In addition, the understanding of these processes is hindered by the fact that effects of food availability often co-vary with other environmental factors. We used a food supplementation experiment to test the effect of food availability on two complementary stress measures, feather corticosterone (CORTf) and Heterophil/Lymphocyte-ratio (H/L) in developing red kite (Milvus milvus) nestlings, a species with competitive brood hierarchy. By statistically controlling for the effect of food supplementation on the nestlings’ body condition, we disentangled the effects of food and ambient temperature on nestlings during development. Experimental food supplementation increased body condition, and both CORTf and H/L were reduced in nestlings of high body condition. Additionally, CORTf decreased with age in non-supplemented nestlings. H/L decreased with age in all nestlings and was lower in supplemented last-hatched nestlings compared to non-supplemented ones. Ambient temperature showed a negative effect on H/L. Our results indicate that food shortage increases the nestlings’ stress levels through both, a reduced food intake affecting nutritional state and the nestlings’ social environment. Thus, food availability in conjunction with ambient temperature shape between- and within-nest differences in stress load, which may have carry-over effects on behaviour and performance in further life-history stages.
Attributes of natal habitat often affect early stages of natal dispersal. Thus, environmental gradients at mountain slopes are expected to result in gradients of dispersal behavior and to drive elevational differences in dispersal distances and settlement behavior. However, covariation of environmental factors across elevational gradients complicates the identification of mechanisms underlying the elevational patterns in dispersal behavior. Assuming a decreasing food availability with elevation, we conducted a food supplementation experiment of red kite (Milvus milvus) broods across an elevational gradient toward the upper range margin and we GPS-tagged nestlings to assess their start of dispersal. While considering timing of breeding and breeding density across elevation, this allowed disentangling effects of elevational food gradients from co-varying environmental gradients on the age at departure from the natal home range. We found an effect of food supplementation on age at departure, but no elevational gradient in the effect of food supplementation. Similarly, we found an effect of breeding density on departure age without an underlying elevational gradient. Supplementary-fed juveniles and females in high breeding densities departed at younger age than control juveniles and males in low breeding densities. We only found an elevational gradient in the timing of breeding. Late hatched juveniles, and thus individuals at high elevation, departed at earlier age compared to early hatched juveniles. We conclude that favorable natal food conditions, allow for a young departure age of juvenile red kites. We show that the elevational delay in breeding is compensated by premature departure resulting in an elevational gradient in departure age. Thus, elevational differences in dispersal behaviour likely arise due to climatic factors affecting timing of breeding. However, the results also suggest that spatial differences in food availability and breeding density affect dispersal behavior and that their large-scale gradients within the distributional range might result in differential natal dispersal patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.