With controlled nanometre-sized pores and surface areas of thousands of square metres per gram, metal-organic frameworks (MOFs) may have an integral role in future catalysis, filtration and sensing applications. In general, for MOF-based device fabrication, well-organized or patterned MOF growth is required, and thus conventional synthetic routes are not suitable. Moreover, to expand their applicability, the introduction of additional functionality into MOFs is desirable. Here, we explore the use of nanostructured poly-hydrate zinc phosphate (α-hopeite) microparticles as nucleation seeds for MOFs that simultaneously address all these issues. Affording spatial control of nucleation and significantly accelerating MOF growth, these α-hopeite microparticles are found to act as nucleation agents both in solution and on solid surfaces. In addition, the introduction of functional nanoparticles (metallic, semiconducting, polymeric) into these nucleating seeds translates directly to the fabrication of functional MOFs suitable for molecular size-selective applications.
Integrating metal-organic frameworks (MOFs) in microelectronics has disruptive potential because of the unique properties of these microporous crystalline materials. Nanoscale patterning is a fundamental step in the implementation of MOFs in miniaturised solid-state devices. Conventional MOF patterning methods suffer from a low resolution and poorly defined pattern edges. Here, we demonstrate for the first time resist-free, direct X-ray and e-beam lithography of MOFs. This process avoids etching damage and contamination, and leaves the porosity and crystallinity of the patterned MOFs intact. The resulting highquality patterns have a record sub-50 nm resolution, far beyond the state of the art in MOF patterning and approaching the mesopore regime. The excellent compatibility of X-ray and e-beam lithography with existing microfabrication processes, both in research and production facilities, provides an avenue to explore the integration of MOFs in microelectronics further. This approach is the first example of direct lithography of any type of microporous crystalline network solid, and marks an important milestone in the processing of such materials.
This paper describes a fabrication process of hollow microneedle arrays with a sharp beveled tip for transdermal drug delivery. A master is fabricated through a double deep x-ray lithography process. First, a polymethylmethacrylate (PMMA) sheet is exposed to produce single PMMA parts with a sawtooth profile. The tip angle of each tooth determines the final tip angle of the microneedles. The PMMA parts are assembled and glued on a conductive substrate and then exposed through a second x-ray mask containing an array of hollow triangles as absorbing structures. A metal layer is then electrodeposited around the needles in order to form the future base of the array. A polyvinyl alcohol (PVA) solution is cast on top of the master to form a negative mold of the microneedle array after a low temperature curing and peel-off steps. A liquid PMMA solution is cast on top of the PVA negative mold and after the full PMMA polymerization the PVA is dissolved in water. This fabrication method can be performed in a non-clean room environment and requires little instrumentation. It is therefore compatible with a low-cost mass-fabrication scheme.
Deep X-ray lithography combined with sol-gel techniques offers facile fabrication of controlled patterned films. Using sol-gel, different functional properties can be induced; deep X-ray lithography alters the functionality in the exposed regions. Miniaturized devices based on local property changes are easily fabricated: this technique requires no resist, enabling direct patterning of films in a one-step lithographic process.
Films from the cephalopod protein reflectin demonstrate multifaceted functionality as infrared camouflage coatings, proton transport media, and substrates for growth of neural stem cells. A detailed study of the in vitro formation, structural characteristics, and stimulus response of such films is presented. The reported observations hold implications for the design and development of advanced cephalopod-inspired functional materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.