Intense physical activity and dieting are core symptoms of anorexia nervosa (AN). Their combination evolves into compulsivity, leading the patient into an out-of-control spiral. AN patients exhibit an altered activation of nucleus accumbens (NAc), revealing a dysfunctional mesocorticolimbic reward circuitry in AN. Since evidence exists that a dysregulation of the glutamate system in the NAc influences reward and taking advantage of the activity-based anorexia (ABA) rat model, which closely mimics the hallmarks of AN, we investigated the involvement of the glutamatergic signaling in the NAc in this experimental model. We here demonstrate that food restriction causes hyperactive and compulsive behavior in rodents, inducing an escalation of physical activity, which results in dramatic weight loss. Analysis of the glutamate system revealed that, in the acute phase of the pathology, ABA rats increased the membrane expression of GluA1 AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor subunits together with its scaffolding protein SAP97. Recovery of body weight reduced GluN2A/2B balance together with the expression of their specific scaffolding proteins, thus suggesting persistent maladaptive neurotransmission. Taken together, AMPA and NMDA (N-methyl-D-aspartate) receptor subunit reorganization may play a role in the motivational mechanisms underlying AN.
Patients suffering from anorexia nervosa (AN) display altered neural activity, morphological, and functional connectivity in the fronto-striatal circuit. In addition, hypoglutamatergic transmission and aberrant excitability of the medial prefrontal cortex (mPFC) observed in AN patients might underpin cognitive deficits that fuel the vicious cycle of dieting behavior. To provide a molecular mechanism, we employed the activity-based anorexia (ABA) rat model, which combines the two hallmarks of AN (i.e., caloric restriction and intense physical exercise), to evaluate structural remodeling together with alterations in the glutamatergic signaling in the mPFC and their impact on temporal memory, as measured by the temporal order object recognition (TOOR) test. Our data indicate that the combination of caloric restriction and intense physical exercise altered the homeostasis of the glutamate synapse and reduced spine density in the mPFC. These events, paralleled by an impairment in recency discrimination in the TOOR test, are associated with the ABA endophenotype. Of note, after a 7-day recovery period, body weight was recovered and the mPFC structure normalized but ABA rats still exhibited reduced post-synaptic stability of AMPA and NMDA glutamate receptors associated with cognitive dysfunction. Taken together, these data suggest that the combination of reduced food intake and hyperactivity affects the homeostasis of the excitatory synapse in the mPFC contributing to maintain the aberrant behaviors observed in AN patients. Our findings, by identifying novel potential targets of AN, may contribute to more effectively direct the therapeutic interventions to ameliorate, at least, the cognitive effects of this psychopathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.