The accurate modeling of the landslide‐generated tsunami characteristics in the so‐called near‐field is crucial for many practical applications. In this paper, we present a new full‐3‐D numerical method for modeling tsunamis generated by rigid and impermeable landslides in OpenFOAM® based on the overset mesh technique. The approach has been successfully validated through the numerical reproduction of past experiments for landslide‐generated tsunamis triggered by a rigid and impermeable wedge at a sloping coast. The method has been applied to perform a detailed numerical study of the near‐field wave features induced by submerged landslides. A parametric analysis has been carried out to explore the importance of the landslide's initial acceleration, directly related to the landslide‐triggering mechanisms, on the tsunami generation process and on the related wave properties. Near‐field analysis of the numerical results confirms that the influence of the initial acceleration on the tsunami wave properties is significant, affecting wave height, wave period, and wave celerity. Furthermore, it is found that the tsunami generation mechanism experiences a saturation effect for increasing landslide's initial acceleration, confirming and extending previous studies. Moreover, the resulting extended database, composed of previous experimental data and new numerical ones, spanning a wider range of governing parameters, has been represented in the form of a “nondimensional wavemaker curve,” and a new relationship for predicting the wave properties in the near‐field as a function of the Hammack number is proposed.
Historic coastal structures have played a key role in small- to medium-size ports, being the driving force for the local development of coastal communities. Because coastal managers require reliable risk-based analysis of the whole life cycle of these coastal structures, previous lifetimes should be studied. This is a differentiating factor with respect to the newly built breakwaters. For this reason, in this work, a methodology for assessing how the hydraulic performance of an expired lifetime has evolved over the years is presented. It is performed following a probabilistic approach due to the uncertainty related to both the involved variables (wave climate, geometrical and structural breakwater variables) and the hydraulic response of the structure. The first ones are characterized by reliable probability distribution functions. The second ones are characterized by reliable formulae for the analysis of the hydraulic response. However, their non-conventional designs located in shallow-water locations require site-dependent formulae. To overcome this problem, a novel methodology to apply CFD numerical models is presented. Finally, it is integrated in a high-resolution time-dependent probabilistic methodology which takes into account the stochastic behaviour of all the involved variables, coastal and structural processes with a good uncertainty level. This article is part of the theme issue ‘Environmental loading of heritage structures’.
There are coastal areas which are particularly prone to landslide-generated tsunami risk. The destructive effects caused by the impulsive waves, generated by landslide sources, can be strongly magnified by the characteristics of the so-called "confined geometries" (e.g. bays, reservoirs, lakes, volcanic islands, fjords, etc.). Complicated physical phenomena (e.g. trapping mechanisms, edge waves, wave runup, etc.) take place as a consequence of the interaction between the generated waves and the local bathymetry and control the tsunami propagation and interaction with the coast, often causing devastating consequences. Many past events of landslide-generated tsunamis testify this reality (e.g. Lituya Bay, Alaska, Fritz et al., 2009; Stromboli Island, Italy, Tinti et al., 2005; Anak Krakatau, Indonesia, Grilli et al., 2019). To reduce and mitigate the tsunami risk a proper comprehension, and modelling, of such complicated phenomena is crucial. Landslide-generated tsunamis have been largely studied by exploiting experimental, analytical and numerical modelling. Experimental tests are often time and money consuming, especially if 3D models are considered. Large facilities, as well as complicated experimental configurations and sophisticated measurement systems (e.g. Romano et al. 2016), are often needed. Furthermore, not always it is possible to explore in detail the influence of all the involved parameters, in particular those related to the landslide triggering mechanisms and rheology, that have a considerable influence on the wave characteristics in the so-called "near-field". To this end, numerical modelling can provide a valuable assistance. The new tools offered by the Computational Fluid Dynamics (CFD) methods represent a valuable means for shedding light on the unresolved aspects. In particular, the 3D CFD modelling techniques appear to be crucial as far as the tsunami characteristics in the near-field, induced by landslide sources, are concerned. Indeed, the accurate reproduction of the energy transfer between the landslide and the water is essential to model the tsunami generation and propagation mechanisms, allowing to explore a large variety of landslide triggering mechanisms and rheology. In this paper we present a numerical study of the landslide-generated tsunamis in the near-field.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/liUdiV2qXPg
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.