The feasibility of 3D-printed molds for complex solid fuel block geometries of hybrid rocket engines is investigated. Additively produced molds offer more degrees of freedom in designing an optimized but easy to manufacture mold. The solid fuel used for this demonstration was hydroxyl-terminated polybutadiene (HTPB). Polyvinyl alcohol (PVA) was chosen as the mold material due to its good dissolving characteristics. It is shown that conventional and complex geometries can be produced reliably with the presented methods. In addition to the manufacturing process, this article presents several engine tests with different fuel grain geometries, including a short overview of the test bed, the engine and first tests.
Initial experiments in the design process of a novel 3D printed conformal propellant tank for small satellites are conducted. Contact angle measurements of static colored water droplets on printed PLA, PMMA, and PETG sample plates are performed. Additionally, the optical characteristics of transparent printed tanks of two to five millimeter wall thickness and with three illumination setups are evaluated. The results indicate that the influence of fluorescein as a colorant in the useful concentration only slightly affects the contact angle measurements. The combination of well scattered UV light and use the smallest possible wall thicknesses, on the order of two millimeters, made out of PLA provides the best visibility. These findings enable the development of a printed conformal tank design with an integrated PMD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.