We introduce a new extension of image correlation spectroscopy (ICS) and image cross-correlation spectroscopy (ICCS) that relies on complete analysis of both the temporal and spatial correlation lags for intensity fluctuations from a laser-scanning microscopy image series. This new approach allows measurement of both diffusion coefficients and velocity vectors (magnitude and direction) for fluorescently labeled membrane proteins in living cells through monitoring of the time evolution of the full space-time correlation function. By using filtering in Fourier space to remove frequencies associated with immobile components, we are able to measure the protein transport even in the presence of a large fraction (>90%) of immobile species. We present the background theory, computer simulations, and analysis of measurements on fluorescent microspheres to demonstrate proof of principle, capabilities, and limitations of the method. We demonstrate mapping of flow vectors for mixed samples containing fluorescent microspheres with different emission wavelengths using space time image cross-correlation. We also present results from two-photon laser-scanning microscopy studies of alpha-actinin/enhanced green fluorescent protein fusion constructs at the basal membrane of living CHO cells. Using space-time image correlation spectroscopy (STICS), we are able to measure protein fluxes with magnitudes of mum/min from retracting lamellar regions and protrusions for adherent cells. We also demonstrate the measurement of correlated directed flows (magnitudes of mum/min) and diffusion of interacting alpha5 integrin/enhanced cyan fluorescent protein and alpha-actinin/enhanced yellow fluorescent protein within living CHO cells. The STICS method permits us to generate complete transport maps of proteins within subregions of the basal membrane even if the protein concentration is too high to perform single particle tracking measurements.
We have analyzed the spontaneous symmetry breaking and initiation of actin-based motility in keratocytes (fish epithelial cells). In stationary keratocytes, the actin network flow was inwards and radially symmetric. Immediately before motility initiation, the actin network flow increased at the prospective cell rear and reoriented in the perinuclear region, aligning with the prospective axis of movement. Changes in actin network flow at the cell front were detectable only after cell polarization. Inhibition of myosin II or Rho kinase disrupted actin network organization and flow in the perinuclear region and decreased the motility initiation frequency, whereas increasing myosin II activity with calyculin A increased the motility initiation frequency. Local stimulation of myosin activity in stationary cells by the local application of calyculin A induced directed motility initiation away from the site of stimulation. Together, these results indicate that large-scale actin–myosin network reorganization and contractility at the cell rear initiate spontaneous symmetry breaking and polarized motility of keratocytes.
The completion of the human genome draft has taken several years and is only the beginning of a period in which large amounts of DNA and RNA sequence information will be required from many individuals and species. Conventional sequencing technology has limitations in cost, speed, and sensitivity, with the result that the demand for sequence information far outstrips current capacity. There have been several proposals to address these issues by developing the ability to sequence single DNA molecules, but none have been experimentally demonstrated. Here we report the use of DNA polymerase to obtain sequence information from single DNA molecules by using fluorescence microscopy. We monitored repeated incorporation of fluorescently labeled nucleotides into individual DNA strands with single base resolution, allowing the determination of sequence fingerprints up to 5 bp in length. These experiments show that one can study the activity of DNA polymerase at the single molecule level with single base resolution and a high degree of parallelization, thus providing the foundation for a practical single molecule sequencing technology.T he Sanger method of DNA sequencing (1) and subsequent developments in automation (2) and computation (3) revolutionized the world of biological sciences and eventually led to the sequencing of the consensus human genome (4, 5). The successes of this and other genome projects have only whetted the appetite of the scientific community, and many applications of DNA sequencing have been proposed that will require cheaper, faster, or more sensitive sequencing technology than conventional methods currently provide. After the determination of the consensus human genome, there is a desire to sequence many individual human genomes to provide highresolution genotypes that can be used to determine the complex relationships among disease, pharmaceutical efficacy, and genetic variability (6-8). Similarly, aggressive technological innovation is required for the field of comparative genomics to reach its full potential (4). Finally, mRNA sequencing is valuable to determine exon splicing patterns (9) and as a tool to discover gene function from context-specific expression data (10).There have been many proposals to develop new sequencing technologies based on single molecule measurements, generally either by observing the interaction of particular proteins with DNA (6, 11-13) or by using ultra high-resolution scanned probe microscopy (14). Although none of these methods has been demonstrated experimentally, they are interesting because they promise high sensitivity, low cost, and in some cases a high degree of parallelization (15). Unlike conventional technology, their speed and read length would not be inherently limited by the resolving power of electrophoretic separation. Single molecule sensitivity might permit direct sequencing of mRNA from rare cell populations or perhaps even individual cells.A major obstacle in the development of single molecule sequencing schemes is that DNA has an extraordinarily ...
Image correlation microscopy methodology was extended and used to determine retrospectively the density, dynamics and interactions of α5-integrin in migrating cells. α5-integrin is present in submicroscopic clusters containing 3-4 integrins before it is discernibly organized. The integrin in nascent adhesions, as identified by the presence of paxillin, is ∼1.4 times more concentrated, ∼4.5 times more clustered and much less mobile than in surrounding regions. Thus, while integrins are clustered throughout the cell, they differ in nascent adhesions and appear to initiate adhesion formation, despite their lack of visible organization. In more mature adhesions where the integrin is visibly organized there are ∼900 integrins μm–2 (about fivefold higher than surrounding regions). Interestingly, α5-integrin and α-actinin, but not paxillin, reside in a complex throughout the cell, where they diffuse and flow together, even in regions where they are not organized. During adhesion disassembly some integrins diffuse away slowly, α-actinin undergoes a directed movement at speeds similar to actin retrograde flow (0.29 μm min–1), while all of the paxillin diffuses away rapidly.
SummaryRaster image correlation spectroscopy (RICS) is a new and novel technique for measuring molecular dynamics and concentrations from fluorescence confocal images. The RICS technique extracts information about molecular dynamics and concentrations from images of living cells taken on commercial confocal systems. Here we develop guidelines for performing the RICS analysis on an analogue commercial laser scanning confocal microscope. Guidelines for typical instrument settings, image acquisition settings and analogue detector characterization are presented. Using appropriate instrument/acquisition parameters, diffusion coefficients and concentrations can be determined, even for highly dynamic dye molecules in solution. Standard curves presented herein demonstrate the ability to detect protein concentrations as low as ∼ 2 nM. Additionally, cellular measurements give accurate values for the diffusion of paxillin-enhanced-green fluorescent protein (EGFP), an adhesion adaptor molecule, in the cytosol of the cell and also show slower paxillin dynamics near adhesions where paxillin interacts with immobile adhesion components. Methods are presented to account for bright immobile structures within the cell that dominate spatial correlation functions; allowing the extraction of fast protein dynamics within and near these structures. A running average algorithm is also presented to address slow cellular movement or movement of cellular features such as adhesions. Finally, methods to determine protein concentration in the presence
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.