Summary.With the increasing relevance and availability of on-line prices that we see today, it is natural to ask whether the prediction of the consumer price index (CPI), or related statistics, may usefully be computed more frequently than existing monthly schedules allow for.The simple answer is 'yes', but there are challenges to be overcome first. A key challenge, addressed by our work, is that web-scraped price data are extremely messy and it is not obvious, a priori , how to reconcile them with standard CPI statistics. Our research focuses on average prices and disaggregated CPI at the level of product categories (lager, potatoes, etc.) and develops a new model that describes the joint time evolution of latent daily log-inflation rates driving prices seen on the Internet and prices recorded in official surveys, with the model adapting to various product categories. Our model reveals the differing levels of dynamic behaviour across product category and, correspondingly, differing levels of predictability. Our methodology enables good prediction of product-category-specific CPI immediately before their release. In due course, with increasingly complete web-scraped data, combined with the best survey data, the prospect of more frequent intermonth aggregated CPI prediction is an achievable goal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.