We prove a Gannon–Lee theorem for non-globally hyperbolic Lorentzian metrics of regularity $$C^1$$ C 1 , the most general regularity class currently available in the context of the classical singularity theorems. Along the way, we also prove that any maximizing causal curve in a $$C^1$$ C 1 -spacetime is a geodesic and hence of $$C^2$$ C 2 -regularity.
We extend both the Hawking–Penrose theorem and its generalisation due to Galloway and Senovilla to Lorentzian metrics of regularity $$C^1$$ C 1 . For metrics of such low regularity, two main obstacles have to be addressed. On the one hand, the Ricci tensor now is distributional, and on the other hand, unique solvability of the geodesic equation is lost. To deal with the first issue in a consistent way, we develop a theory of tensor distributions of finite order, which also provides a framework for the recent proofs of the theorems of Hawking and of Penrose for $$C^1$$ C 1 -metrics (Graf in Commun Math Phys 378(2):1417–1450, 2020). For the second issue, we study geodesic branching and add a further alternative to causal geodesic incompleteness to the theorem, namely a condition of maximal causal non-branching. The genericity condition is re-cast in a distributional form that applies to the current reduced regularity while still being fully compatible with the smooth and $$C^{1,1}$$ C 1 , 1 -settings. In addition, we develop refinements of the comparison techniques used in the proof of the $$C^{1,1}$$ C 1 , 1 -version of the theorem (Graf in Commun Math Phys 360:1009–1042, 2018). The necessary results from low regularity causality theory are collected in an appendix.
We consider pseudoconvexity properties in Lorentzian and Riemannian manifolds and their relationship in static spacetimes. We provide an example of a causally continuous and maximal null pseudoconvex spacetime that fails to be causally simple. Its Riemannian factor provides an analogous example of a manifold that is minimally pseudoconvex, but fails to be convex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.