Cooling of machining operations by liquid nitrogen is a promising approach for reducing cutting temperatures, increasing tool life and improving the workpiece surface integrity. Unfortunately, the cooling fluid tends to evaporate within the supply channel. This induces process variations and hinders the use of nitrogen cooling in commercial applications. In this work, the coolant is applied via the tool’s rake face during orthogonal turning of Ti-6Al-4V. The effect of a nitrogen supply pressure adjustment and a subcooler usage—proposed here for the first time for machining—is analyzed in terms of process forces, tool temperatures and wear patterns, taken dry cutting as a reference. Thereby, reliable cooling strategies are identified for cryogenic cutting.
All manufacturing processes have an impact on the surface layer state of a component, which in turn significantly determines the properties of parts in service. Although these effects should certainly be exploited, knowledge on the conditioning of the surfaces during the final cutting and abrasive process of metal components is still only extremely limited today. The key challenges in regard comprise the process-oriented acquisition of suitable measurement signals and their use in robust process control with regard to the surface layer conditions. By mastering these challenges, the present demands for sustainability in production on the one hand and the material requirements in terms of lightweight construction strength on the other hand can be successfully met. In this review article completely new surface conditioning approaches are presented, which originate from the Priority Program 2086 of the Deutsche Forschungsgemeinschaft (DFG).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.