The nature of the inputs and outputs of a brain region defines its functional specialization. The frontal portion of the brain is essential for goal-directed behaviors, however, the biological basis for its functional organization is unknown. Here, exploring structural connectomic properties, we delineated 12 frontal areas, defined by the pattern of their white matter connections. This result was highly reproducible across neuroimaging centers, acquisition parameters, and participants. These areas corresponded to regions functionally engaged in specific tasks, organized along a rostro-caudal axis from the most complex high-order association areas to the simplest idiotopic areas. The rostro-caudal axis along which the 12 regions were organized also reflected a gradient of cortical thickness, myelination, and cell body density. Importantly, across the identified regions, this gradient of microstructural features was strongly associated with the varying degree of information processing complexity. These new anatomical signatures shed light onto the structural organization of the frontal lobes and could help strengthen the prediction or diagnosis of neurodevelopmental and neurodegenerative disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.