Recent years have witnessed an increasing interest in time‐dependent coupled‐cluster (TDCC) theory for simulating laser‐driven electronic dynamics in atoms and molecules, and for simulating molecular vibrational dynamics. Starting from the time‐dependent bivariational principle, we review different flavors of single‐reference TDCC theory with either orthonormal static, orthonormal time‐dependent, or biorthonormal time‐dependent spin orbitals. The time‐dependent extension of equation‐of‐motion coupled‐cluster theory is also discussed, along with the applications of TDCC methods to the calculation of linear absorption spectra, linear and low‐order nonlinear response functions, highly nonlinear high harmonic generation spectra and ionization dynamics. In addition, the role of TDCC theory in finite‐temperature many‐body quantum mechanics is briefly described along with a few other application areas.This article is categorized under: Electronic Structure Theory > Ab Initio Electronic Structure Methods Theoretical and Physical Chemistry > Spectroscopy Software > Simulation Methods
We present a derivation of real-time (RT) time-dependent orbital-optimized Møller–Plesset (TDOMP2) theory and its biorthogonal companion, time-dependent non-orthogonal OMP2 theory, starting from the time-dependent bivariational principle and a parametrization based on the exponential orbital-rotation operator formulation commonly used in the time-independent molecular electronic structure theory. We apply the TDOMP2 method to extract absorption spectra and frequency-dependent polarizabilities and first hyperpolarizabilities from RT simulations, comparing the results with those obtained from conventional time-dependent coupled-cluster singles and doubles (TDCCSD) simulations and from its second-order approximation, TDCC2. We also compare our results with those from CCSD and CC2 linear and quadratic response theories. Our results indicate that while TDOMP2 absorption spectra are of the same quality as TDCC2 spectra, including core excitations where optimized orbitals might be particularly important, frequency-dependent polarizabilities and hyperpolarizabilities from TDOMP2 simulations are significantly closer to TDCCSD results than those from TDCC2 simulations.
Real-time simulations of laser-driven electron dynamics contain information about molecular optical properties through all orders in response theory. These properties can be extracted by assuming convergence of the power series expansion of induced electric and magnetic multipole moments. However, the accuracy relative to analytical results from response theory quickly deteriorates for higher-order responses due to the presence of high-frequency oscillations in the induced multipole moment in the time domain. This problem has been ascribed to missing higher-order corrections. We here demonstrate that the deviations are caused by nonadiabatic effects arising from the finite-time ramping from zero to full strength of the external laser field. Three different approaches, two using a ramped wave and one using a pulsed wave, for extracting electrical properties from real-time time-dependent electronic-structure simulations are investigated. The standard linear ramp is compared to a quadratic ramp, which is found to yield highly accurate results for polarizabilities, and first and second hyperpolarizabilities, at roughly half the computational cost. Results for the third hyperpolarizability are presented along with a simple, computable measure of reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.