Abstract. We develop category theory within Univalent Foundations, which is a foundational system for mathematics based on a homotopical interpretation of dependent type theory. In this system, we propose a definition of "category" for which equality and equivalence of categories agree. Such categories satisfy a version of the Univalence Axiom, saying that the type of isomorphisms between any two objects is equivalent to the identity type between these objects; we call them "saturated" or "univalent" categories. Moreover, we show that any category is weakly equivalent to a univalent one in a universal way. In homotopical and higher-categorical semantics, this construction corresponds to a truncated version of the Rezk completion for Segal spaces, and also to the stack completion of a prestack.
We give an algebraic characterization of the syntax and semantics of a class of languages with variable binding. We introduce a notion of 2-signature: such a signature specifies not only the terms of a language, but also reduction rules on those terms. To any 2-signature $S$ we associate a category of "models" of $S$. This category has an initial object, which integrates the terms freely generated by $S$, and which is equipped with reductions according to the inequations given in $S$. We call this initial object the language generated by $S$. Models of a 2--signature are built from relative monads and modules over such monads. Through the use of monads, the models---and in particular, the initial model---come equipped with a substitution operation that is compatible with reduction in a suitable sense. The initiality theorem is formalized in the proof assistant Coq, yielding a machinery which, when fed with a 2-signature, provides the associated programming language with reduction relation and certified substitution.Comment: v2: - Abstract and Introduction completely rewritten - Addition of examples and remarks in Secs. 1 and 2 - Sec 3 now describes the implementation in proof assistant Coq of the main theorem v3: - final version for publication in MSC
Abstract. We develop category theory within Univalent Foundations, which is a foundational system for mathematics based on a homotopical interpretation of dependent type theory. In this system, we propose a definition of "category" for which equality and equivalence of categories agree. Such categories satisfy a version of the Univalence Axiom, saying that the type of isomorphisms between any two objects is equivalent to the identity type between these objects; we call them "saturated" or "univalent" categories. Moreover, we show that any category is weakly equivalent to a univalent one in a universal way. In homotopical and higher-categorical semantics, this construction corresponds to a truncated version of the Rezk completion for Segal spaces, and also to the stack completion of a prestack.
Abstract. Initial Semantics aims at interpreting the syntax associated to a signature as the initial object of some category of "models", yielding induction and recursion principles for abstract syntax. Zsidó [Zsi10, Chap. 6] proves an initiality result for simply-typed syntax: given a signature S, the abstract syntax associated to S constitutes the initial object in a category of models of S in monads.However, the iteration principle her theorem provides only accounts for translations between two languages over a fixed set of object types. We generalize Zsidó's notion of model such that object types may vary, yielding a larger category, while preserving initiality of the syntax therein. Thus we obtain an extended initiality theorem for typed abstract syntax, in which translations between terms over different types can be specified via the associated category-theoretic iteration operator as an initial morphism. Our definitions ensure that translations specified via initiality are type-safe, i.e. compatible with the typing in the source and target language in the obvious sense.Our main example is given via the propositions-as-types paradigm: we specify propositions and inference rules of classical and intuitionistic propositional logics through their respective typed signatures. Afterwards we use the category-theoretic iteration operator to specify a double negation translation from the former to the latter.A second example is given by the signature of PCF. For this particular case, we formalize the theorem in the proof assistant Coq. Afterwards we specify, via the category-theoretic iteration operator, translations from PCF to the untyped lambda calculus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.