Ensembles of trapped atoms interacting with on-chip microwave resonators are considered as promising systems for the realization of quantum memories, novel quantum gates, and interfaces between the microwave and optical regime. Here, we demonstrate coupling of magnetically trapped ultracold Rb ground-state atoms to a coherently driven superconducting coplanar resonator on an integrated atom chip. When the cavity is driven off-resonance from the atomic transition, the microwave field strength in the cavity can be measured through observation of the AC shift of the atomic hyperfine transition frequency. When driving the cavity in resonance with the atoms, we observe Rabi oscillations between hyperfine states, demonstrating coherent control of the atomic states through the cavity field. These observations enable the preparation of coherent atomic superposition states, which are required for the implementation of an atomic quantum memory.
A crucial point in the experimental implementation of hybrid quantum systems consisting of superconducting circuits and atomic ensembles is bringing the two partners close enough to each other that a strong quantum coherent coupling can be established. Here, we propose to use the metallization structures of a half wavelength superconducting coplanar waveguide resonator as a persistent current trap for ultracold paramagnetic atoms. Trapping atoms with the resonator structure itself is provided by using short-ended and inductively coupled resonators instead of capacitively coupled ones as customary in circuit quantum electrodynamics. We analyze the external quality factor of short-ended coplanar waveguide resonators and show that it can be easily designed for the desired regime of quantum circuits. The magnetic field configuration at the resonator is calculated by means of numerical three-dimensional simulations of the London equations. We present a way to transport an atomic ensemble into the coplanar resonator gap where the magnetic field of the cavity mode is maximum. The configuration allows stable trapping by persistent currents and paves the route toward strong coupling between atomic clouds and the cavity mode which is required for cooperative effects and gives the interface between atoms and circuit quantum electrodynamics.
We experimentally investigate superconducting coplanar waveguide resonators in external magnetic fields and present two strategies to reduce field-induced dissipation channels and resonance frequency shifts. One of our approaches is to significantly reduce the superconducting ground-plane areas, which leads to reduced magnetic field-focussing and thus to lower effective magnetic fields inside the waveguide cavity. By this measure, the field-induced losses can be reduced by more than one order of magnitude in mT out-of-plane magnetic fields. When these resonators are additionally coupled inductively instead of capacitively to the microwave feedlines, an intrinsic closed superconducting loop is effectively shielding the heart of the resonator from magnetic fields by means of flux conservation. In total, we achieve a reduction of the field-induced resonance frequency shift by up to two orders of magnitude. We combine systematic parameter variations on the experimental side with numerical magnetic field calculations to explain the effects of our approaches and to support our conclusions. The presented results are relevant for all areas, where high-performance superconducting resonators need to be operated in magnetic fields, e.g. for quantum hybrid devices with superconducting circuits or electron spin resonance detectors based on coplanar waveguide cavities.
We present an experimental approach for cryogenic dielectric measurements on ultra-thin insulating films. Based on a coplanar microwave waveguide design we implement superconducting quarter-wave resonators with inductive coupling, which allows us to determine the real part ε 1 of the dielectric function at GHz frequencies and for sample thicknesses down to a few nm. We perform simulations to optimize resonator coupling and sensitivity, and we demonstrate the possibility to quantify ε 1 with a conformal mapping technique in a wide sample-thickness and ε 1 -regime. Experimentally we determine ε 1 for various thin-film samples (photoresist, MgF 2 , and SiO 2 ) in the thickness regime of nm up to µm. We find good correspondence with nominative values and we identify the precision of the film thickness as our predominant error source. Additionally we demonstrate a measurement of ε 1 (T ) vs. temperature for a SrTiO 3 bulk sample, using an in-situ reference method to compensate for the temperature dependence of the superconducting resonator properties.
We have fabricated and investigated a stacked two-chip device, consisting of a lumped element resonator on one chip, which is side-coupled to a coplanar waveguide transmission line on a second chip. We present a full model to predict the behavior of the device dependent on the position of the lumped element resonator with respect to the transmission line. We identify different regimes, in which the device can be operated. One of them can be used to tune the coupling between the two subsystems. Another regime enables frequency tunability of the device, without leaving the over-coupled limit for internal quality factors of about 10 4 , while in the last regime the resonator properties are insensitive against small variations of the position. Finally, we have measured the transmission characteristics of the resonator for different positions, demonstrating a good agreement with the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.