Humans are fundamentally social. They form societies which consist of hierarchically layered nested groups of various quality, size, and structure. The anthropologic literature has classified these groups as support cliques, sympathy groups, bands, cognitive groups, tribes, linguistic groups, and so on. Anthropologic data show that, on average, each group consists of approximately three subgroups. However, a general understanding of the structural dependence of groups at different layers is largely missing. We extend these early findings to a very large high-precision large-scale internet-based social network data. We analyse the organisational structure of a complete, multi-relational, large social multiplex network of a human society consisting of about 400,000 odd players of an open-ended massive multiplayer online game for which we know all about their various group memberships at different layers. Remarkably, the online players' society exhibits the same type of structured hierarchical layers as found in hunter-gatherer societies. Our findings suggest that the hierarchical organisation of human society is deeply nested in human psychology.
By event-driven molecular dynamics simulations we investigate magnetotransport in a two-dimensional model with randomly distributed scatterers close to the field-induced localization transition. This transition is generated by percolating skipping orbits along the edges of obstacle clusters. The dynamic exponents differ significantly from those of the conventional transport problem on percolating systems, thus establishing a new dynamic universality class. This difference is tentatively attributed to a weak-link scenario, which emerges naturally due to barely overlapping edge trajectories. We make predictions for the frequency-dependent conductivity and discuss implications for active colloidal circle swimmers in a hetegogeneous environment.
Elites are subgroups of individuals within a society that have the ability and means to influence, lead, govern, and shape societies. Members of elites are often well connected individuals, which enables them to impose their influence to many and to quickly gather, process, and spread information. Here we argue that elites are not only composed of highly connected individuals, but also of intermediaries connecting hubs to form a cohesive and structured elite-subgroup at the core of a social network. For this purpose we present a generalization of the -core algorithm that allows to identify a social core that is composed of well-connected hubs together with their ‘connectors’. We show the validity of the idea in the framework of a virtual world defined by a massive multiplayer online game, on which we have complete information of various social networks. Exploiting this multiplex structure, we find that the hubs of the generalised -core identify those individuals that are high social performers in terms of a series of indicators that are available in the game. In addition, using a combined strategy which involves the generalised -core and the recently introduced -core, the elites of the different ’nations’ present in the game are perfectly identified as modules of the generalised -core. Interesting sudden shifts in the composition of the elite cores are observed at deep levels. We show that elite detection with the traditional -core is not possible in a reliable way. The proposed method might be useful in a series of more general applications, such as community detection.
Almost universally, wealth is not distributed uniformly within societies or economies. Even though wealth data have been collected in various forms for centuries, the origins for the observed wealth-disparity and social inequality are not yet fully understood. Especially the impact and connections of human behavior on wealth could so far not be inferred from data. Here we study wealth data from the virtual economy of the massive multiplayer online game (MMOG) Pardus. This data not only contains every player's wealth at every point in time, but also all actions over a timespan of almost a decade. We find that wealth distributions in the virtual world are very similar to those in Western countries. In particular we find an approximate exponential distribution for low wealth levels and a power-law tail for high levels. The Gini index is found to be , which is close to the indices of many Western countries. We find that wealth-increase rates depend on the time when players entered the game. Players that entered the game early on tend to have remarkably higher wealth-increase rates than those who joined later. Studying the players' positions within their social networks, we find that the local position in the trade network is most relevant for wealth. Wealthy people have high in- and out-degrees in the trade network, relatively low nearest-neighbor degrees, and low clustering coefficients. Wealthy players have many mutual friendships and are socially well respected by others, but spend more time on business than on socializing. Wealthy players have few personal enemies, but show animosity towards players that behave as public enemies. We find that players that are not organized within social groups are significantly poorer on average. We observe that “political” status and wealth go hand in hand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.