We introduce a simple criterion for lattice models to predict quantitatively the crossover between the classical and the quantum scaling of the Kibble-Zurek mechanism, as the one observed in a quantum φ 4 -model on a 1D lattice [Phys. Rev. Lett. 116, 225701 (2016)]. We corroborate that the crossover is a general feature of critical models on a lattice, by testing our paradigm on the quantum Ising model in transverse field for arbitrary spin-s (s ≥ 1/2) in one spatial dimension. By means of tensor network methods, we fully characterize the equilibrium properties of this model, and locate the quantum critical regions via our dynamical Ginzburg criterion. We numerically simulate the Kibble-Zurek quench dynamics and show the validity of our picture, also according to finite-time scaling analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.