The scale-up of bioprocesses remains one of the major obstacles in the biotechnology industry. Scale-down bioreactors have been identified as valuable tools to investigate the heterogeneities observed in large-scale tanks at the laboratory scale. Additionally, computational fluid dynamics (CFD) simulations can be used to gain information about fluid flow in tanks used for production. Here, we present the rational design and comprehensive characterization of a scale-down setup, in which a flexible and modular plug-flow reactor was connected to a stirred-tank bioreactor. With the help of CFD using the realizable k-ε model, the mixing time difference between a 20 and 4000 L bioreactor was evaluated and used as scale-down criterion. CFD simulations using a shear stress transport (SST) k-ω turbulence model were used to characterize the plugflow reactor in more detail, and the model was verified using experiments. Additionally, the model was used to simulate conditions where experiments technically could not be performed due to sensor limitations. Nevertheless, verification is difficult in this case as well. This was the first time a scale-down setup was tested on high-cell-density Escherichia coli cultivations to produce industrially relevant antigen-binding fragments (Fab). Biomass yield was reduced by 11% and specific product yield was reduced by 20% during the scale-down cultivations. Additionally, the intracellular Fab fraction was increased by using the setup. The flexibility of the introduced scale-down setup in combination with CFD simulations makes it a valuable tool for investigating scale effects at the laboratory scale. More information about the large scale is still necessary to further refine the setup and to speed up bioprocess scale-up in the future.
The scale-up of bioprocesses is still one of the major obstacles in biotechnological industry. Scale-down bioreactors were identified as valuable tools to investigate the heterogeneities observed in large-scale tanks in laboratory-scale. Additionally, computational fluid dynamics (CFD) simulations can be used to gain information about fluid flow in tanks used for production. Here we present the rational design and comprehensive characterization of a scale-down setup, in which a flexible and modular plug-flow reactor is connected to a stirred tank bioreactor. With the help of CFD the mixing time difference between differently scaled bioreactors were evaluated and used as scale-down criterium. Additionally, it was used to characterize the setup at conditions were experiments could technically not be performed. This was the first time a scale-down setup was tested on high cell density Escherichia coli cultivations to produce industrial relevant antigen-binding fragments (Fab). Reduced biomass and product yields were observed during the scale-down cultivations. Additionally, the intracellular Fab fraction was increased by using the setup. The results show that including CFD in the design and characterization of a scale-down reactor can help to keep a connection to production scale and also gain intensive knowledge about the setup, which enhances usability.
Background Escherichia coli is one of the most important hosts for production of recombinant proteins in biopharmaceutical industry. However, when selecting a suitable production strain, it is often not considered that a lot of different sub-species exist, which can differ in their genotypes and phenotypes. Another important development step is the scale-up of bioprocesses with the particular challenge that heterogeneities and gradients occur at production scale. These in turn can affect the production organism and can have negative impact on the process and the product quality. Therefore, researchers developed scale-down reactors, which are used to mimic manufacturing conditions in laboratory scale. The main objectives of this study were to determine the extent to which scale-related process inhomogeneities affect the misincorporation of non-canonical amino acids into the recombinant target protein, which is an important quality attribute, and whether strain specific properties may have an impact. Results We investigated two industrially relevant E. coli strains, BL21(DE3) and HMS174(DE3), which produced an antigen binding fragment (Fab). The cells were cultivated in high cell density fed-batch mode at laboratory scale and under scale-down conditions. We demonstrated that the two host strains differ significantly with respect to norleucine misincorporation into the target protein, especially under heterogeneous cultivation conditions in the scale-down reactor. No norleucine misincorporation was observed in E. coli BL21(DE3) for either cultivation condition. In contrast, norleucine incorporation into HMS174(DE3) was already detectable in the reference process and increased dramatically in scale-down experiments. Norleucine incorporation was not random and certain positions were preferred over others, even though only a single codon exists. Differences in biomass and Fab production between the strains during scale-down cultivations could be observed as well. Conclusions This study has shown that E. coli BL21(DE3) is much more robust to scale-up effects in terms of norleucine misincorporation than the K12 strain tested. In this respect, BL21(DE3) enables better transferability of results at different scales, simplifies process implementation at production scale, and helps to meet regulatory quality guidelines defined for biopharmaceutical manufacturing.
BACKGROUND The scale‐up of Escherichia coli bioprocesses for production of recombinant proteins in the biopharmaceutical industry can affect process performance due to gradients occurring at production scale. The main objective of this study was to investigate the effect of scale‐related process heterogeneities on properties of high‐cell‐density fermentation broths. Two industrially relevant Escherichia coli strains, BL21(DE3) and HMS174(DE3), were used for production of antibody fragments (Fab). To generate these heterogeneities, we used a scale‐down device for cell cultivation, which mimics conditions of production scale (>1000 L) in a 20 L laboratory scale. This setup helps to evaluate the impact of process scale‐up on the resulting fermentation broth properties relevant for primary recovery. RESULTS We found differences in broth viscosity between the two strains, but also between the standard laboratory‐scale and the scale‐down cultivations used. An increase in cell size was measured in scale‐down cultivations with three orthogonal methods, using scanning electron microscopy, dynamic light scattering and a dispersion analyzer. Strong hints for an altered agglomeration tendency of the cells after scale‐down cultivations were found by measurement of settling velocity and viscoelasticity of the fermentation broth. CONCLUSIONS In this work, industrially relevant fermentation broths of Escherichia coli cells producing Fab were characterized and represent a relevant basis for rational design of downstream processing operations. The findings show that scale‐related process heterogeneities can alter the phenotype of Escherichia coli cells and thus alter fermentation broth properties relevant for primary recovery. Considering scale‐up effects in upstream processing reflected in downstream processing will help to optimize the entire bioproduction chain in the future. © 2023 The Authors. Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI).
Background: Escherichia coli is one of the most important hosts for production of recombinant proteins in biopharmaceutical industry. However, when selecting a suitable production strain, it is often not considered that a lot of different sub-species exist, which can differ in their genotypes and phenotypes. Another important development step is the scale-up of bioprocesses with the particular challenge that heterogeneities and gradients occur at production scale. These in turn can affect the production organism and can have negative impact on the process and the product quality. Therefore, researchers developed scale-down reactors, which are used to mimic manufacturing conditions in laboratory scale. The main objectives of this study were to determine the extent to which scale-related process inhomogeneities affect the misincorporation of non-canonical amino acids into the recombinant target protein, which is an important quality attribute, and whether strain specific properties may have an impact.Results: We investigated two industrially relevant E. coli strains, BL21(DE3) and HMS174(DE3), which produced an antigen binding fragment (Fab). The cells were cultivated in high cell density fed batch mode at laboratory scale and under scale-down conditions. We demonstrated that the two host strains differ significantly with respect to norleucine misincorporation into the target protein, especially under heterogeneous cultivation conditions in the scale-down reactor. No norleucine misincorporation was observed in E. coli BL21(DE3) for either cultivation condition. In contrast, norleucine incorporation into HMS174(DE3) was already detectable in the reference process and increased dramatically in scale-down experiments. Norleucine incorporation was not random and certain positions were preferred over others, even though only a single codon exists. Differences in biomass and Fab production between the strains during scale-down cultivations could be observed as well. Conclusions: All in all, this study has shown that E. coli BL21(DE3) is much more robust to scale-up effects in terms of norleucine misincorporation than the K12 strain tested. In this respect, BL21(DE3) enables better transferability of results at different scales, simplifies process implementation at production scale, and helps to meet regulatory quality guidelines defined for biopharmaceutical manufacturing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.