Due to the auxiliary loads' increasing influence on the overall energy consumption of electrified vehicles, a holistic tank‐to‐wheel analysis is necessary. To do so, the impact of the auxiliary load on the energy consumption of a fuel cell electric vehicle (FCEV) drivetrain is investigated by taking different driving behaviors and three European environmental conditions (Spanish, German and Norwegian weather profiles) into account. The driving pattern is analyzed with the study ‘Mobilität in Deutschland' [1] and represented with the Artemis driving cycles [2]. To match various situations of the everyday life, realistic boundary conditions are determined by five starting times. The corresponding weather conditions are obtained and five weather profiles for every meteorological season including the ambient temperature, solar flux and humidity are considered. By using a complete FCEV simulation model, a realistic energy consumptions is simulated and the impact of different climate conditions as well as driving behaviors is investigated. As a result, a significant influence of the auxiliary load on the overall energy consumption is detected and the need to consider the overall energy demand is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.