This paper describes a novel actuation system for very compact and light-weight robotic devices, like artificial hands. The actuation concept presented here allows the implementation of powerful tendon-based driving systems, using as actuators small-size DC motors characterized by high speed and low torque. After the presentation of the basic concept of this novel actuation system, the constitutive equations of the system are given, validated by means of laboratory tests. Moreover, the problem of tracking a desired actuation force profile is taken into account, considering as load a massspring-damper system. A control algorithm based on a secondorder sliding manifold has been firstly evaluated by means of simulations, and then validated by experiments. This outputfeedback controller has been chosen to guarantee a high level of robustness against disturbances, parameter variations and uncertainties while maintaining a low computational burden.
Magnetic shape memory alloys (MSMA) are a promising material for actuation purposes as they provide relatively large strains and relatively high operation frequencies. In this paper three concepts of such actuators are introduced. The first part will describe a so called spring actuator, where the MSM element is working against a restore pre‐stress spring. The second concept uses two MSM elements working antagonistically to substitute the pre‐stress spring. A small sized actuator for valve or switching applications is shown in the third concept. Advantages and disadvantages are highlighted and show the potential of the comparatively new active material.
Magnetic shape memory (MSM) alloys are comparatively new active materials which can be used for several industrial applications, ranging from precise positioning systems to advanced robotics. Beyond the material research, which deals with the basic thermo‐magneto‐mechanical properties of the crystals, the design as well as the control of the actuators displacement is an essential challenge. This paper addresses those two topics, trying to give to the reader a useful overview of existing results, but also presents new ideas. First, it introduces and discusses in details some possible designs, with a special emphasis on innovative actuator design concepts which are able to exploit the particular potentialities of MSM elements. The second focus of the paper is on the problem of designing a controller, i.e., an algorithm that allows to obtain a required performance from the actuator. The proposed control strategies try to take into account two main characteristics of MSM elements: the hysteresis and the temperature dependence. The effectiveness of the strategies is emphasized by experimental results performed on a commercially available MSM actuator demonstrator.
The need for mechatronic devices that are lightweight, less cumbersome and able to produce small, quick and precise movements or forces is ever increasing in many fields of engineering. Many recent design solutions are based on electrically, magnetically or thermally activated materials, often referred to as smart materials. This tutorial paper overviews the main properties and the resulting applications of two recently discovered smart materials, magnetic shape memory alloys (MSMAs) and electroactive polymers (EAPs), which have complementary characteristics and seem suitable to overcome some of the inherent limitations of other materials widely used in industrial applications, such as piezoelectric ceramics. As many other smart materials, MSMAs and EAPs exhibit nonlinear, hysteretic and time-varying behaviors, and therefore this tutorial discusses the main ways to model and effectively compensate these critical issues with advanced control strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.