Race surveys of Phytophthora infestans over 4 years in North Wales have shown that races unselected by host resistance are frequent. In most cases frequencies of complex races are those expected from the frequencies of simple race characters if these assort at random. These results suggest that recombination between races may be unrestricted. The significance of unexpected deviations from the predicted frequencies are discussed.
Using field-programmable gate arrays (FPGAs) as a substrate to deploy soft graphics processing units (GPUs) would enable offering the FPGA compute power in a very flexible GPU-like tool flow. Application-specific adaptations like selective hardening of floating-point operations and instruction set subsetting would mitigate the high area and power demands of soft GPUs. This work explores the capabilities and limitations of soft General Purpose Computing on GPUs (GPGPU) for both fixed- and floating point arithmetic. For this purpose, we have developed FGPU: a configurable, scalable, and portable GPU architecture designed especially for FPGAs. FGPU is open-source and implemented entirely in RTL. It can be programmed in OpenCL and controlled through a Python API. This article introduces its hardware architecture as well as its tool flow. We evaluated the proposed GPGPU approach against multiple other solutions. In comparison to homogeneous Multi-Processor System-On-Chips (MPSoCs), we found that using a soft GPU is a Pareto-optimal solution regarding throughput per area and energy consumption. On average, FGPU has a 2.9× better compute density and 11.2× less energy consumption than a single MicroBlaze processor when computing in IEEE-754 floating-point format. An average speedup of about 4× over the ARM Cortex-A9 supported with the NEON vector co-processor has been measured for fixed- or floating-point benchmarks. In addition, the biggest FGPU cores we could implement on a Xilinx Zynq-7000 System-On-Chip (SoC) can deliver similar performance to equivalent implementations with High-Level Synthesis (HLS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.