When students share and explore chemistry ideas with others, they use gestures and their bodies to perform their understanding. As a publicly visible, spatio−dynamic medium of expression, gestures and the body provide productive resources for imagining the submicroscopic, three-dimensional, and dynamic phenomena of chemistry together. In this paper, we analyze the role of gestures and the body as interactional resources in interactive spaces for collaborative meaning-making in chemistry. With our moment-by-moment analysis of video-recorded interviews, we demonstrate how creating spaces for, attending to, and interacting with students' gestures and bodily performances generate opportunities for learning. Implications for teaching and assessment that are responsive to students' ideas in chemistry are discussed.
For over 30 years, researchers have investigated students' ideas about energy with the intent of reforming instructional practice. In this pursuit, Watts contributed an influential study with his 1983 paper ''Some alternative views of energy'' [Phys. Educ. 18, 213 (1983)]. Watts' ''alternative frameworks'' continue to be used for categorizing students' non-normative ideas about energy. Using a resources framework, we propose an alternate analysis of student responses from Watts' interviews. In our analysis, we show how students' activated resources about energy are disciplinarily productive. We suggest that fostering seeds of scientific understandings in students' ideas about energy may play an important role in their development of scientific literacy.
Energy is a crosscutting concept in science and features prominently in national science education documents. In the Next Generation Science Standards, the primary conceptual learning goal is for learners to conserve energy as they track the transfers and transformations of energy within, into, or out of the system of interest in complex physical processes. As part of tracking energy transfers among objects, learners should (i) distinguish energy from matter, including recognizing that energy flow does not uniformly align with the movement of matter, and should (ii) identify specific mechanisms by which energy is transferred among objects, such as mechanical work and thermal conduction. As part of tracking energy transformations within objects, learners should (iii) associate specific forms with specific models and indicators (e.g., kinetic energy with speed and/or coordinated motion of molecules, thermal energy with random molecular motion and/or temperature) and (iv) identify specific mechanisms by which energy is converted from one form to another, such as incandescence and metabolism. Eventually, we may hope for learners to be able to optimize systems to maximize some energy transfers and transformations and minimize others, subject to constraints based in both imputed mechanism (e.g., objects must have motion energy in order for gravitational energy to change) and the second law of thermodynamics (e.g., heating is irreversible). We hypothesize that a subsequent goal of energy learning—innovating to meet socially relevant needs—depends crucially on the extent to which these goals have been met.
Abstract. We examine the types of emergent language eighth grade students in rural Maine middle schools use when they discuss energy in their first experiences with Project-Based Inquiry Science: Energy, a research-based curriculum that uses a specific language for talking about energy. By comparative analysis of the language used by the curriculum materials to students' language, we find that students' talk is at times more aligned with a Stores and Transfer model of energy than the Forms model supported by the curriculum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.